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Waisi, H.; Trifković, J.; Dodevski, V.;
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Abstract: Brassinosteroids (BRs) are a class of plant hormones that play important roles in regulating
various physiological and developmental processes in plants. One of the most effective BRs involved
in modulating crop growth is 24-epibrassinolide (24-EBL). The effects of different concentrations
of 24-EBL on various biochemical and biophysical parameters critical to early growth stages and
seedling development were investigated using two maize hybrids, ‘ZP 434’ (a new-generation hybrid)
and ‘ZP 704’ (an older-generation hybrid). The evaluation of results is based on measurements of
germination percentage, morphometric parameters, redox status, comparative analysis of thermody-
namic parameters (such as Gibbs free energy, enthalpy, entropy), and the concentration of specific
sugars in different parts of maize seedlings. The results indicate that the germination and initial
growth of maize seedlings are influenced by the flow of crucial sugars from the remaining seed (as a
source of nutrients) towards the plumule and radicle (as sink organs). Furthermore, alterations in
Gibbs free energy play a significant role in these sugar transfers within the maize seedlings. The seed
germination was most affected by the highest concentrations of 24-EBL, showing inhibitory effects,
whereas lower and moderate concentrations of exogenously added 24-EBL exhibited a beneficial
influence on the initial phases of seedling growth. The mentioned approach gives new insights into
source–sink relationships and can be used as a quantitative measure of the germination energy, which
until now has been a qualitative criterion in seed science.

Keywords: brassinosteroids; plant seedling growth; sugars; thermodynamic changes; total redox status

1. Introduction

Brassinosteroids (BRs) are one of the last identified classes of phytohormones [1], with
a coordinating effect on the various developmental processes of plants, thereby decisively
affecting the processes of growth and development in normal and stressful environmental
conditions [2–8]. The coordination action of BRs is reflected in complex signaling pathways,
triggered by the binding of BR molecules to a specific plasmalemma receptor [5,9]. The
BR signaling pathways interfere with other signaling pathways in the plant cell: other
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phytohormones and light reception systems (e.g. phytochrome system, etc.), as well as
other signaling pathways (Ca signals, signals from lipid molecules, etc.) [5,9–12].

Seed germination and seedling establishment are developmental stages of plants that
are highly sensitive to variations in environmental conditions, where the impact of BRs is
crucial (late frost, early drought, parasite attacks, etc.) [13]. 24-Epibrassinolide (24-EBL)
is a phytohormone belonging to the BR group. Studies have shown that 24-EBL has a
significant effect on seed germination, seedling growth, and plant development. It acts by
interacting with specific receptors in plants, activating signaling pathways that regulate
growth and development processes. In agricultural production, the application of 24-EBL
can be useful for improving yield and improving plant quality and resistance to stressful
conditions. However, it is important to note that the optimal concentrations and application
time of 24-EBL may vary depending on the plant species, the stage of plant development,
and growing conditions [14,15].

The energy required for developmental activities in young plants is derived from the
breakdown of stored starch. The regulation of seed germination and growth is influenced
by BRs affecting α-Amylase expression and activity and the degradation of starch in the
endosperm in rice (Oryza sativa) [16]. This process involves the conversion of starch into
intermediate saccharides and eventually into monosaccharides, primarily glucose. These
monosaccharides then act as a substrate for respiration and other synthetic processes during
the plant’s growth and development [17,18]. Glucose and its derivatives play a significant
role in signaling processes as indicators of carbon status in plant cells via hexokinase
enzymes as “sugar sensors” [19], thereby directing carbon metabolism toward catabolism
or anabolism by modulating different sets of genes. Sucrose, as a disaccharide, is the
major transport sugar in the phloem of the vast majority of higher plants [20] in addition
to having a signaling function similar to glucose, reflecting the carbon status of plant
cells [21]. Some other mono-, di- and tri-saccharides (e.g., fructose, arabinose, raffinose)
have different functions in plant metabolism, such as acting as monomers or products of
degradation of different more complex saccharides with different functions, e.g., in cell
walls and in seeds [22,23]. BRs may influence the status of this saccharides, possibly to
affect homeostasis of the cell wall of plants by acting on the ester linkages of pectin and
polyphenolic compounds [24]. Observing the various effects of 24-EBL on different sugars,
the influence of 24-EBL on disaccharide trehalose, which contributes to the protection of
plant proteins under stress [25–27], common when forming or germinating seeds, is of
great importance for germination and the early stages of seedling development.

During the initial stages of germination, seeds present a metastable and unstable
system with a high risk of disruption of structures and functions, mainly due to the pro-
duction of reactive oxygen and nitrogen species and oxidative stress [17,28,29], so it is
important to determine what make it possible to overcome unstable stages (crisis stage)
in the development of each plant, called seedling establishment. Recent results suggest
that there is a certain tendency to maintain the stability of these metastable structures of
living matter through controlled modulation of system entropy [30,31] and other thermo-
dynamic parameters, such as enthalpy and Gibbs free energy, which may be of interest in
considering seed germination and the first stages of seedling growth. The Gibbs free energy
in seedlings refers to the amount of free energy available or required during growth and
development [32]. During the growth of maize seedlings under the influence of 24-EBL,
there are changes in the chemical composition of the plant, such as the breakdown of stored
starch in the seed and conversion to saccharides, which provides energy for the initial
growth of the seedling and which result in changes in the Gibbs free energy [33].

Among various thermodynamic approaches which found applications in plant sys-
tems [34,35], the cybernetic approach based on the Aristide Lindenmayer’s L-Systems [36,37]
has proven fruitful in modeling the various situations that occur during plant growth and
development [38,39] and even in the case of the very complex, so far mostly qualitatively
described source–sink relationships, which are very important in determining the yield
of cultivated plants [40]. The problem of quantitative modeling of plant systems, which
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would take into account the interconnections of biochemical, energetics, and information
parameters, has not yet been satisfactorily resolved. This approach is very demanding, but
it can be applied to plant systems such as germinating seeds, seedlings, or small model
plants, such as Arabidopsis sp.

One of the areas where BRs have been shown to have an influence is in the regulation
of source–sink relations in plants, where source tissues such as leaves are responsible
for photosynthesis and the production of carbohydrates, while sink tissues such as roots,
flowers, and developing seeds are responsible for using these carbohydrates for growth
and development [41–44]. Studies have shown that BRs can influence source–sink relations
by regulating the expression of genes involved in carbohydrate metabolism, transport, and
partitioning [45,46]. A thorough explanation of the biochemical and biophysical stages that
govern these processes still needs to be provided. It is crucial to comprehend the impact
of BRs on the mechanisms underlying plant responses in order to anticipate an optimal
source–sink relationship.

The intention of this work was to test the effect of BRs on processes in plants by testing
physicochemical processes in maize seedlings, which are also a model system for both
source–sink relationships and plant seed germination processes. The actual innovative
approach provides a more comprehensive understanding of plant seedling growth and the
effects of 24-EBL on maize seedlings from a thermodynamics standpoint. Instead of the
existing qualitative indicators of plant seed germination (“germination energy”), the same
process can be described quantitatively, in real thermodynamic terms, by using parameters,
such as Gibbs free energy, enthalpy, entropy, so that the germination of seeds of various
genotypes can be compared quantitatively. In addition, it can help determine the optimal
dose of 24-EBL that can enhance the growth and development of the seedlings without
compromising their energetics or thermodynamic stability.

2. Materials and Methods
2.1. Plant Material, Treatments, and Growth Conditions

Two maize hybrids, ZP434 (drought tolerant) and ZP 704 (older-generation hybrid,
which is a standard hybrid, more susceptible to stressful conditions), were used in the ex-
periments. The seeds were produced in the “Maize Research Institute ZEMUN POLJE”, Re-
public of Serbia. Concentrations of 24-EBL used for treatments and growth conditions were
previously described and confirmed in several papers [2,47–51], and based on findings (in-
hibitory and promotion effect), a range of concentrations from 5.2 × 10−9 to 5.2 × 10−15 M
were chosen [52].

2.2. Seed Germination and Determination of Morphometric Parameters of Seedlings

Seed germination and determination of morphometric parameters of seedlings was
performed using International Seed Testing Association (ISTA) rules for seed testing [49,51].
The 800 previously measured seeds were divided into 4 equal portions, a control group and
groups intended to be treated with different targeted concentrations of 24-EBL (5.2 × 10−9,
5.2 × 10−12, and 5.2 × 10−15 M). Seeds were surface sterilized with 0.5% (v/v) sodium
hypochlorite solution and washed thoroughly with several changes of sterile distilled water.
Each group of 200 seeds was germinated in 4 replicates (50 seeds per one box) in 2 L plastic
boxes, on filter paper sheets. At the beginning of the experiment, each replicate was topped
with 60 mL of different concentrations of 24-EBL solution, and the control was topped
with distilled water [50], under the phytothrone (Loške tovarne hladilnikov Škofja Loka,
d.d., Slovenia) conditions at 24 ◦C (over day) and 21 ◦C (overnight), with a 12 h of light
(110–160 µmol photons m−2 s−1)/12 h of dark regime [51,52]. After 7 days, 25 uniformly
grown seedlings from each box (in total, 100 seedlings per treatment) were divided with a
scalpel into plumule, radicle, and RoS. Seedling parts chosen for the further experiments
were measured using an analytical balance (Ohaus Pioneer, model PA413) and stored in a
deep freezer at −70 ◦C.
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2.3. Electron Paramagnetic Resonance Spectroscopy

Electron paramagnetic resonance spectroscopy (EPR) was used to assess the total
redox status associated with the production of the reactive oxygen species (ROS) and
reactive nitrogen species (RNS) in seedlings of the maize hybrids. All EPR recordings were
performed on a Elexsys II E-540 X/L EPR spectrometer (Bruker, Rheinstetten, Germany)
in the X-band. During the EPR measurements, experimental parameters were as follows:
Center field 3506.3 G, field width 75 G, microwave frequency 9.85 GHz, microwave power
6.325 mW, modulation amplitude 2 G, and modulation frequency 100 kHz. Quantification
of the EPR results consisted of measuring the remaining signal in the system after the
reduction of the pyrrolidine membrane-permeable spin probe 3CP by maize seedlings.
A 30 µL 0.075 mM 3CP solution dissolved in deionized water was used as the control
(Sigma–Aldrich, Steinheim, Germany). Whole seedlings of measured mass were immersed
in 10 mL of 0.075 µM 3CP solution. After 60 min, 30 µL of the 3CP solution was sampled
and transferred into the EPR spectrometer for signal reading. Sampling was performed by
drawing the solution into 5 cm long gas-permeable Teflon tubes (Zeus industries, Raritan,
NJ, USA) with a wall thickness of 0.025 mm and an inside diameter of 0.6 mm. The obtained
EPR signals were compared with the control by assessing the double integral values of
the EPR spectra. All recordings were performed at room temperature and analyzed using
Xepr-2.6b.170 software (Bruker GmbH, Billerica, MA, USA).

2.4. Thermodynamic Calculations

Isothermal measurements of thermodynamic parameters were performed at a high
temperature in an oven (Carbolite Gero GmbH & Co. KG, Neuhausen, Germany) operating
at a heating rate of 30 ◦C min−1. All measurements were carried out in a static oxygen
atmosphere (without continuous gas flow). The previously separated portions of the
25 seedlings of both maize hybrids (ZP 434 and ZP 704) treated with appropriate concentra-
tions of exogenously added 24-EBL (5.20 × 10−9 M, 5.20 × 10−12 M, and 5.20 × 10−15 M
and control) were individually thermally treated at T = 60, 105, and 130 ◦C. Samples were
placed in an oven and subjected to temperature treatment in the time range t = 8 min to
t = 30 min. Subsequently, the samples were placed in a desiccator and then measured.
The masses recorded represent the average mass losses of the sample. Each experi-
ment at a given operating temperature was repeated three times. Water activity in
the system can be described as the “effective” water content. The temperature depen-
dence of the change in water activity (isothermal displacement) can be described by the
Claussius–Clapeyron equation:

ln
(

aw2

aw1

)
=

q + λw

R
=

(
1
T2

− 1
T1

)
, (1)

where q is the heat of sorption, λw is the latent heat of evaporation for water (44.0 kJ kg−1

at 25 ◦C), and R is the universal gas constant, while aw1 and aw2 are water activities at
different temperatures (T1 and T2) at a given equilibrium water content. Changes in
external (temperature and/or humidity) and internal factors (“glassy state” stability) affect
the energy status of seedlings with respect to the respiratory processes of living cells, which
can be estimated (calculated) using the sorption isotherm to which the following equations
for different thermodynamic parameters apply [28]:

dHo =
R · T1 · T2

(T2 − T1)
ln
(

aw1

aw2

)
, (2)

dGo = R(T2 − T1) ln
(

aw1

aw2

)
, (3)

and

dSo =
(dHo − dGo)

dT
, (4)
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where at a given water content, aw1 and aw2 represent relative humidity at lower and higher
temperatures T1 and T2, respectively. dHo, dGo, and dSo represent differential enthalpy,
differential Gibbs free energy, and differential entropy dehydration, respectively. The total
(cumulative) change in Gibbs free energy can be obtained from equation [28]:

∆Go = ∆Ho − Ti∆So, (5)

where Ti represents the selected temperature. Other definitions of thermodynamic parameters
are given in [49,53]. Obtained results are not shown and were used for statistical evaluation.

2.5. Statistical Evaluation

The results represent the mean values of the measurements on the three experimental
samples. Multivariate linear regression analysis (Partial Least Square Regression—PLSR
method) was used to evaluate the relationship between the content of selected sugars
(trehalose, arabinose, glucose, fructose, sucrose, raffinose (results of sugars used for sta-
tistical evaluations can be founded in refs. [49,53])) and differential Gibbs free energy
(∆Go; kJ mol−1) as a measure of synthetic processes in the maize hybrids. PLSR can analyze
strongly collinear data, reducing the high-dimensional data matrix to a much smaller and
interpretable set of latent variables (LVs). LVs were calculated for both independent and de-
pendent variable matrices, plus a relationship between them. The quality of the models was
monitored with the following parameters: (i) R2cal, the cumulative sum of squares of the Ys
explained by all extracted components, and R2CV, the cumulative fraction of the total vari-
ation of the Ys that can be predicted by all extracted components, and (ii) root mean square
errors of calibration (RMSEC) and root mean square errors of cross-validation (RMSECV).
Validation of the models was performed using venetian blinds cross-validation. The data
were mean-centered and scaled to unit variance before statistical analyses. PLSR was carried
out using PLS ToolBox, v. 6.2.1 (http://www.eigenvector.com/software/pls_toolbox.htm,
accessed on 15 February 2023, Eigenvector Research, Inc., Wenatchee, WA 98801, USA) for
MATLAB (7.12.0 (R2011a)).

The results of seed germination, morphometric parameters, and total redox status
were obtained from the average of four biological replicates. Data significant difference
was analyzed using one-way ANOVA with Fisher’s Least Significant Difference (LSD) post
hoc test. Analyses were performed using Microsoft Excel 2016 (Data Analysis Package).

3. Results and Discussion
3.1. Influence of 24-EBL on Seed Germination

Based on the obtained results (Figure 1), it can be seen that different concentrations of
24-EBL have a different effect on the germination of hybrid seeds ZP 704 and ZP 434. The
greatest effect is observed at the highest concentrations, where germination is 93% for ZP
434 and 92% for ZP 704, unlike the control samples, whose germination rate is almost 96%.
Observing the differences in the influence of different concentrations on germination, small
variations are observed at all tested concentrations except for the highest concentration. In
addition, taking into consideration differences between the hybrids, it can be seen that the
hybrid ZP 704 shows a higher sensitivity than the hybrid ZP 434. Taking into consideration
the results shown in Figures 1 and 2, as well as our previous study, there is an indication of a
better germination and a higher Vigor index (as an important quality parameter combining
seedling growth rate and dry weight) [53] of the maize hybrid ZP 434 in comparison to the
hybrid ZP 704 at a higher gradient of concentration of the 24-EBL solution in which the
seeds of these maize genotypes germinated. This finding is in accordance with the declared
higher resistance of the plants of the ZP 434 hybrid to stressful environmental conditions
confirmed by Waisi [49].

http://www.eigenvector.com/software/pls_toolbox.htm
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3.2. Determination of Morphometric Parameters of Treated Seedlings

The hybrid ZP 434 showed a positive impact on plumule elongation for all 24-EBL con-
centrations, with the exception of the highest concentration (5.2 × 10−9 M), as compared to
the control. Previous results suggest that higher concentrations (5.2 × 10−8, 5.2 × 10−7 M)
have an inhibitory effect, while concentrations of 5.2 × 10−6 M have a total inhibitory
effect on the germination of seeds and growth [53]. The results from Figure 2A suggest
that the hybrid ZP 704 exhibited plumule length values similar to control samples only at
the lowest concentration of 24-EBL (5.2 × 10−15 M), while higher concentrations inhibited
plumule length. It is important to note that the germination of seeds and the elongation of
seedlings are highly influenced by the ABA and the combined effect of BRs and GAs [54–56].
In germinating cereal grains, GAs trigger the expression of a number of genes encoding
enzymes such as α-Amylase, crucial for the breakdown of starch reserves [57,58].

The mechanism of action of BRs on root growth is complex and includes the interaction
of hormones with receptors on the cell membrane. This interaction leads to the activation
of signaling pathways that influence the growth and differentiation of root cells. One of
the main effects of BRs on root growth is the stimulation of cell elongation, leading to
root elongation [59]. A series of studies performed on different plant species showed that
the application of BRs usually leads to an increase in root length. In a study conducted
on barley (Hordeum vulgare L.), the application of 24-EBL led to a 30% increase in root
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length compared to the control group [60]. Similar effects of BRs have been reported in
other crops, such as maize (Zea mays L.), tomato (Solanum lycopersicum L.), and soybean
(Glycine max L.) [59]. However, the results of the present study show that there are slight
differences, but they are not statistically significant (Figure 2B). Taking into account the
differences in the literary data (some point to an increase and others to a decrease in root
length), it can be assumed that the influence of 24-EBL is different for different species,
even hybrids [59,61]. It is necessary to carry out analyses on a large number of species and
varieties in order to be able to draw conclusions about the precise application of 24-EBL
in agriculture.

3.3. Impact of 24-EBL on The total Redox Status

It can be observed from Figure 3 that the EPR signal magnitude of the 24-EBL-treated
maize seedlings for the concentration range from 5.2 × 10−12 to 5.2 × 10−9 M is greater
for the ZP 704 seedlings than for the ZP 434 seedlings, indicating a greater spin probe
reduction potential of ZP 434 in comparison to ZP 704 hybrids and/or greater spin probe
reoxidation potential of ZP 704 in comparison to ZP 434 hybrids. These results could derive
from either lower antioxidant content in ZP 704 in comparison to in ZP 434 hybrids, higher
production of ROS and RNS in ZP 704 in comparison to in ZP 434 hybrids, or both.
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The increased presence of ROS and RNS in both hybrids could be attributed to the
regular auxin-mediated relaxation of the cell wall, which is a necessary part of the cell
elongation process for seedlings [62]. The level of response to stress is noticeably higher in
hybrid ZP 434 compared to hybrid ZP 704, and this can be attributed to increased concentra-
tions of polyphenolic compounds during the germination of hybrid ZP 434, which has more
polar phenolics in both the root and shoot compared to ZP 704 [63]. Auxins and BRs are
known to act independently but in synergy [2,3], especially since it was found that one of
the first genes found to be induced by the action of BRs was xyloglucan endotransglucosy-
lase (XET; [3]), one of the key enzymes in cell wall remodeling during plant cell elongation.
The aforementioned enzyme is also known to be controlled by auxin-mediated acidification
of the cell wall [23]. Furthermore, the exposure of treated ZP 704 seedlings to 24-EBL
could lead to oxidative stress, which is a common occurrence during seed imbibition and
rehydration in the first growth stages of maize seedling. Oxidative stress is a common
event in the rehydration of dry seed tissue [64]. It is also known that the production of ROS
occurs in the cell wall synthesis process [23], which is relatively common in the early stages
of growth and development of maize seedlings, a plant of subtropical origin [29], especially
in stressful conditions.
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3.4. Influence of 24-EBL on Thermodynamic Changes in Maize Seedlings

The model parameters of the regression relationship between the content of selected
sugars (trehalose, arabinose, glucose, fructose, sucrose, raffinose) and differential thermo-
dynamic parameters (entropy, enthalpy, and Gibbs free energy) assessed in 7-day-old maize
seedlings (hybrids ZP 434 and ZP 704) are presented in Tables 1 and 2.

Table 1. Statistical parameters of the models of regression relationship between the content of selected
sugars (Tre, Ara, Glu, Fru, Sah, Raf) and Gibbs free energy assessed in 7-day-old maize seedlings
(hybrid ZP 434).

Thermodynamic Parameter Seedling Parts Model Parameters Regression Coefficients in Model *

Entropy

Plumule (P) Low statistical
significance model

Radicle (R)

RMSEC: 0.0020
RMSECV: 0.0046
R2

Cal: 0.7561
R2

CV: 0.2554

Tre (+), Sah (+), Ara (+)
Glu (−), Fru (−)
Raf (0)

Rest of seed (RoS/S) Low statistical
significance model

Whole seedling Low statistical
significance model

Enthalpy

Plumule (P) Low statistical
significance model

Radicle (R)

RMSEC: 0.3711
RMSECV: 0.8215
R2

Cal: 0.7563
R2

CV: 0.2823

Fru (+), Glu (+)
Ara (−), Sah (−), Tre (−)
Raf (0)

Rest of seed (RoS/S) Low statistical
significance model

Whole seedling Low statistical
significance model

Gibbs Free Energy

Plumule (P)

RMSEC: 0.0152
RMSECV: 0.0539
R2

Cal: 0.9714
R2

CV: 0.8479

Raf (+), Tre (+), Fru (+), Glu (+)
Ara (−), Sah (−)

Radicle (R)

RMSEC: 0.0357
RMSECV: 0.0454
R2

Cal: 0.8517
R2

CV: 0.7779

Glu (+), Fru (+), Tre (+), Sah (+),
Raf (+), Ara (+)

Rest of seed (RoS/S)

RMSEC: 0.1866
RMSECV: 0.2947
R2

Cal: 0.6471
R2

CV: 0.3319

Sah (+), Raf (+)
Ara (−), Glu (−), Fru (−), Tre (−)

Whole seedling

RMSEC: 0.5123
RMSECV: 0.5931
R2

Cal: 0.7188
R2

CV: 0.6328

Glu (+), Ara (+), Tre (+)
Raf (−), Sah (−), Fru (−)

* + (positive influence on the dependent variable, in descending order); − (negative influence on the dependent
variable, in descending order).
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Table 2. Model parameters of regression relationship between the content of selected sugars
(Tre, Ara, Glu, Fru, Sah, Raf) and differential thermodynamic parameters (entropy, enthalpy, and
Gibbs free energy) assessed in 7-day-old maize seedlings (hybrid ZP 704).

Thermodynamic Parameter Seedling Parts Model Parameters Regression Coefficients in Model *

Entropy

Plumule (P)

RMSEC: 0.0072
RMSECV: 0.0098
R2

Cal: 0.7339
R2

CV: 0.5425

Raf (+)
Glu (−), Sah (−), Ara (−), Tre (−)
Fru (0)

Radicle (R)

RMSEC: 0.0087
RMSECV: 0.0097
R2

Cal: 0.6509
R2

CV: 0.6180

Raf (+), Fru (+), Glu (+), Sah (+)
Ara (−), Tre (−)

Rest of seed (RoS/S)

RMSEC: 0.0077
RMSECV: 0.0102
R2

Cal: 0.8687
R2

CV: 0.8117

Glu (+), Ara (+), Sah (+), Raf (+),
Fru (+)
Tre (−)

Whole seedling Low statistical
significance model

Enthalpy

Plumule (P)

RMSEC: 1.3083
RMSECV: 1.7839
R2

Cal: 0.7340
R2

CV: 0.5433

Tre (+), Ara (+), Sah (+), Glu (+),
Raf (−)
Fru (0)

Radicle (R)

RMSEC: 1.5849
RMSECV: 1.7754
R2

Cal: 0.6508
R2

CV: 0.5632

Tre (+), Ara (+)
Sah (−), Glu (−), Fru (−), Raf (−)

Rest of seed (RoS/S)

RMSEC: 1.4122
RMSECV: 2.0551
R2

Cal: 0.8687
R2

CV: 0.7782

Tre (+)
Fru (−), Sah (−), Raf (−), Glu (−),
Ara (−)

Whole seedling Low statistical
significance model

Gibbs Free Energy

Plumule (P)

RMSEC: 0.0709
RMSECV: 0.1692
R2

Cal: 0.3456
R2

CV: 0.4042

Tre (+), Raf (+), Fru (+), Ara (+), Glu
(+)
Sah (−)

Radicle (R) Low statistical
significance model

Rest of seed (RoS/S)

RMSEC: 0.0904
RMSECV: 0.2579
R2

Cal: 0.8282
R2

CV: 0.4600

Sah (+), Ara (+), Fru (+), Tre (+)
Glu (−), Raf (−)

Whole seedling

RMSEC: 0.5291
RMSECV: 0.6804
R2

Cal: 0.8075
R2

CV: 0.7112

Glu (+), Ara (+),
Tre (−), Raf (−), Sah (−), Fru (−)

* + (positive influence on the dependent variable, in descending order); − (negative influence on the dependent
variable, in descending order).

The Gibbs free energy can be used to estimate the thermodynamic feasibility of a
particular reaction or process in maize. A negative Gibbs free energy value indicates that
a reaction is spontaneous and thermodynamically favorable, while a positive Gibbs free
energy value suggests that the reaction is non-spontaneous and requires energy input to
occur. By measuring the Gibbs free energy changes of various biochemical reactions in
maize, a better understanding of the metabolic pathways involved in processes such as
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photosynthesis, respiration, and carbohydrate metabolism could be achieved. As can be
seen from Table 1 and particularly from Table 2, the regression between the content of
sugars against differential entropy vs. enthalpy is inversely proportional, especially with
respect to the monitored parameters in plumulas and radicles of the seedlings of both maize
genotypes. This relationship is very reminiscent of the enthalpy–entropy compensatory
dependence, already observed in related biological material in the works of [49,53], suggest-
ing that the enthalpy–entropy relationship may influence the redistribution of assimilates
in the maize seedlings examined and thus the changes in Gibbs free energy and the growth
of seedlings.

The presented results are significant (Tables 1 and 2), since there is a possibility
of maintaining the stability of these metastable structures of living matter through the
controlled modulation of system entropy (by the inverse relationship of the entropy and
enthalpy changes) [30]. These results indicate that the changes in Gibbs free energy, in
particular seedling organs (plumule (P), radicle (R), rest of seed (RoS/S)), in both corn
hybrids and its linear dependence on monitored sugars are not statistically significant,
contrary to the significant relationship obtained for whole young plants (Tables 1 and 2).
The observed correlations suggest that the regulation of these processes occurs at the plant
seedling level. This indicates that different plant growth regulation processes (mainly
regulated by different phytohormones) and/or source–sink relationships are important
in the redistribution of assimilates and therefore in the regulation of plant growth and
development in maize seedlings. This can be explained in more detail by examining the
regression relationship between Gibbs free energy and the content of monitored sugars in
whole young plants and individual organs (P, R, RoS/S).

The parameters of the PLS model for whole seedlings of ZP 434 maize hybrid (con-
ducted using 30 samples of parts of a young plant: rest of seed + plumule + radicle) were
statistically significant, with relatively high values of R2

cal and R2
CV and a low difference

between the RMSEC and RMSECV values (Table 1, Figure 4).
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Figure 4. (A) The plot of the measured versus the predicted ∆Go values obtained from PLS model
for whole 7-day-old corn seedlings of the ZP 434 hybrid. “P” represents plumule, “R” represents
radicle, and “S” represents rest of seed. K refers to control samples. Numbers from 1K to 30 represent
concentrations of exogenously added 24-EBL to seedlings, from higher to lower concentrations,
respectively; (B) plot of the coefficients of descriptors (sugars: trehalose, arabinose, glucose, fructose,
sucrose, raffinose) in PLS model of the whole 7-day-old maize seedlings of the ZP434 hybrid.

3.5. The multilinear Regression Model for Maize Seedlings

The plot of the measured versus the predicted ∆Go values indicates grouping of
samples of P and R on one side of the regression line and samples of the RoS/S on
the opposite end (Figure 4A). Additionally, in a group of RoS/S samples, the control
samples are distinguished from the treated samples. Figure 4A is proof of source–sink
relationships, such as between maize plumules and radicles, as young developing organs
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and net importers of assimilates (sink organs) and RoS/S, as a net exporter of assimilates
(source organ) [64]. For the ZP 434 hybrid model, it is observed that the medium values
of the exogenously added 24-EBL had the greatest influence on the source–sink ratios,
which coincides with the results of the shoot length in seedlings (Figure 2A). It can be
observed that the values of the ∆Go parameter of thermodynamics for the plumule and
radicle samples have lower values compared to the RoS/S samples, which indicates that
the transfer of energy (and matter) takes place from RoS/S to the plumule and the radicle.
This observation is understandable considering the fact that the RoS/S in maize seedlings
is the source organ, i.e., the origin of the net production of assimilates (mainly mono- and
oligosaccharides) produced by the degradation of the reserve starch, while the plumule
and radicle are sink organs, i.e., they consume or are net “importers” of assimilates from
the RoS/S [18,64]. Furthermore, the onset of grass seed germination is characterized by
the activation of α-Amylase enzyme synthesis (crucial in the process of starch degradation
during grass seed germination, which is again controlled by the production of GA in the
aleurone layer and scutellum of grass seedlings) [64]. In addition, a positive effect of the
examined medium concentrations of 24-EBL on the source-sink relationship for the ZP434
maize hybrid can be seen in Figures 1 and 4A, and based on the results, it can be assumed
that the source–sink relations could be driven by BRs.

Glucose has the highest positive impact on ∆Go changes in the whole ZP434 hybrid
seedling, followed by arabinose and trehalose (Figure 4B). Glucose is a major substrate
of mitochondrial respiration, which, in addition to ATP production, produces the organic
acids necessary for transamination during nitrogen fixation [65]. Furthermore, glucose is
the major monomer of the cell wall polysaccharide [23] but also one of the constituents
of sucrose, the major transport sugar in the vast majority of plants [22]. Bear in mind
that BR phytohormones affect some respiration patterns [6] but also the dynamics of cell
wall construction [24], which is not surprising because the enzyme XET is induced among
other factors by the action of BRs, which explains the observed relationship of the Glu
and ∆Go thermodynamic parameter. A positive effect of arabinose on the change in the
∆Go parameter of thermodynamics would be similarly interpreted, since arabinose is one of
the important monomers in the arabinogalactan polymers of hemicellulose, an important
building block of the cell wall [24].

Furthermore, a positive effect of trehalose on the changes in the ∆Go parameter
of whole ZP 434 hybrid seedlings is also observed (Figure 4B). Trehalose has recently
been found to be of great importance in plant metabolism, although present in a much
smaller amount than other sugars [26]. The significance of this sugar so far stems from
its exceptional properties (maybe due to its participation in the formation of glassy state,
possibly through the water replacement mechanism [27]), which contribute to the protection
of plant proteins under stress [46]. Thus, trehalose complements the effect of other sugars
and LEA proteins that are considered as crucial in the formation of glassy state, which
strongly contributes to the stability of macromolecular structures in dry seeds [27], but
this disaccharide also appears to contribute to their stability during the rehydration and
germination of seeds [29]. It is probable that the primary processes affecting the changes
in the ∆Go parameter of thermodynamics in whole seedlings of ZP 434 maize hybrid are
related to cell wall remodeling, increased respiration of the young plant, and protective
processes related to trehalose. The redistribution of assimilates (associated with the sugars
fructose and sucrose) does not appear to have the positive effect of changing the ∆Go

parameter of thermodynamics in the seedlings. In addition, it is notable that the PLS model
of the radicle of seedlings for the ZP 434 maize hybrid is good because of the high values
of R2

cal (=0.851748) and R2
CV (=0.777918) and small differences between the parameters

RMSEC (=0.0357414) and RMSECV (=0.0454265), which may indicate different metabolism
in these two organs of the ZP 434 hybrids but also of different “sink strength” and different
affinity of these organs to assimilates [66,67].

As stated, glucose plays a variety of roles in the seedlings of different plants [23,65].
Since there is a positive effect of arabinose on ∆Go, it is possible that cell wall remodeling
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processes are of great importance during seed germination and seedling establishment in
the ZP 704 maize hybrid.

The statistical parameters of the multilinear regression model for the whole seedlings
of the ZP 704 maize hybrid are not the best due to the relatively low values of
R2

cal (=0.807494) and R2
CV (=0.711153), and the difference between the parameters RMSEC

(=0.529099) and RMSECV (=0.5680484) is not insignificant. Although the results for the
entire seedlings of ZP704 maize hybrid (Figure 5A) are more scattered relative to equivalent
data for whole seedlings of the ZP434 maize hybrid (Figure 4A), it is observed (Figure 5A)
that the values of the ∆Go parameter of thermodynamics of the ZP 704 hybrid plumule
and radicle are lower or the same for the RoS/S of the ZP704 maize hybrid, a trend that
is observed for the whole seedlings of the ZP 434 maize hybrids (Figure 4A). This could
be associated with the source–sink relationship between plumules and radicles as a sink
organ (both young developing organs and net importers of assimilates) and RoS/S as a
source organ (net exporter of assimilates) [64].
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whole 7-day-old corn seedlings of the ZP704 maize hybrid. “P” represents plumule, “R” represents
radicle, and “S” represents rest of seed. K refers to control samples. Numbers from 1K to 30 represent
concentrations of exogenously added 24-EBL to seedlings, from higher to lower concentrations,
respectively; (B) plot of the coefficients of descriptors (sugars: trehalose, arabinose, glucose, fructose,
sucrose, raffinose) in PLS model of whole 7-day-old maize seedlings of the ZP 704 hybrid.

It is obvious that the changes in the thermodynamic parameter ∆Go (as a measure of the
biosynthetic capacity of the system) depend on the source–sink relationships, whereby ∆Go

flows from the RoS/S to the plumule and radicle (Figures 4A and 5A). For the ZP 704 model,
it is observed that the lower values of the exogenously added 24-EBL have the greatest
influence on the source–sink ratios, which is in accordance with the results of the shoot
length in seedlings (Figure 2A). Although the vast majority of scientific papers about
source–sink relationships are related to fully formed plants, it is clear that due to the simple
hydrostatic rules on the transport of matter (and energy) through phloem [68], similar
rules can apply to seedlings. Moreover, it has been observed that source–sink transitions of
young tissues are determined by the presence of sucrose synthase and invertase enzymes
on target cells [67], which leads to the degradation of sucrose as the major transport sugar
to its hexose components and thus to the formation of a concentration gradient, which
directs the phloem flow to the sink organs. Without going into the question of whether
a phloem system has been developed in 7-day-old maize seedlings or whether sugars
from the RoS/S are transported to the plumule and the radicle in a simple manner, these
processes, and thus the overall source-sink relationships, are highly influenced by plant
hormones [69], affecting sucrose-degrading enzymes.

The results (Tables 1 and 2) indicate the importance of sugar redistribution in different
organs (P, R, RoS/S) of maize seedlings and their effect on ∆Go changes within a metabolic
network whose activation depends on the genotype, the concentration of exogenously
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added 24-EBL, and the type of seedling organ. It was mentioned that this diversity depends
on the phenomenon of sink strength [66,67]. In addition, the effects of exogenously added
24-EBL on these processes in maize seedlings depend on the presence of BR plasmalemma
receptors, the BRI proteins, which can vary in different tissues (root) [70]. Although these
phytohormones are thought to be produced in the plant meristem tissue [71], since it is a
young plant with very pronounced meristem tissue additionally exposed to the exogenous
treatment of 24-EBL, the described experiment corresponds to the concentration of BR-type
phytohormones in a wide variety of plant tissues and species [2].

The canalization transport of auxins through the plant, which greatly influences the
various processes of plant growth and development [72] and related phenomena of apical
dominance and phyllotaxis [73], is the reasons why appropriate cybernetic solutions have
been proposed [74]. However, other phytohormones have been reported to be transported
through the plants and partially modulate the aforementioned effects of auxin [73]. BRs are
one of them [74], which agrees with the intention of Hartwig and Wang [75] to present a
“molecular circuit of steroid signaling in plants”. Our contribution to this problem consisted
of taking into consideration both the energetics and thermodynamics of the plant, with
a presented solution to the problem of source–sink relationships in plant seedlings. The
presented study convincingly demonstrates that it is also possible to describe the process
of plant seed germination quantitatively by using thermodynamic parameters.

4. Conclusions

The results show that the different concentrations of 24-EBL exhibit varying effects on
seed germination. It was found that the highest concentrations of 24-EBL had the greatest
impact on seed germination (inhibitory), while lower and medium concentrations have
a positive effect on the early stages of seedling development. The enthalpy and entropy
correlation affects the redistribution of assimilates in the examined maize seedlings. In
addition, the changes in Gibbs free energy influence the growth of seedlings. The changes
in the thermodynamic parameter ∆Go (as a measure of the biosynthetic capacity of the
system) depend on the source–sink relationships, whereby ∆Go flows from the RoS/S to the
plumule and radicle. This study confirms that the flow of important sugars from the RoS/S
to the plumule and radicle, which are the sink organs, as well as the changes in Gibbs free
energy between these parts are responsible for controlling and regulating the germination
and early growth of the maize seedlings. This study suggests that this approach could be
used to measure the “germination energy” quantitatively (as ∆Go presents a measure of
the chemical potential of living systems), which was previously evaluated qualitatively (as
a percent of germinated seeds) in seed science.
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seedling growth and distribution of mineral elements in two maize hybrids. Chem. Ind. 2017, 71, 201–209. [CrossRef]

51. Waisi, H. The Influence of Brassinosteroid 24-Epibrassinolide on Germination and Early Stages of Growth and Development of
Different Maize Hybrids (Zea mays L.). Ph.D. Thesis, University of Belgrade, Faculty of Biology, Belgrade, Serbia, 2016.

52. Matusmoto, T.; Yamada, K.; Yoshizawa, Y.; Oh, K. Comparison of effect of brassinosteroid and gibberellin biosynthesis inhibitors
on growth of rice seedlings. Rice Sci. 2016, 23, 51–55. [CrossRef]

53. Zhang, W.; Zhao, J.; Li, X.; Dai, H.; Lei, J. Seed morphology and germination of native Tulipa species. Agriculture 2023, 13, 466.
[CrossRef]

54. Gupta, R.; Chakrabarty, S.K. Gibberellic acid in plant: Still a mystery unresolved. Plant Signal. Behav. 2013, 8, e25504. [CrossRef]
55. Olszewski, N.; Sun, T.P.; Gubler, F. Gibberellin signaling: Biosynthesis, catabolism, and response pathways. Plant Cell 2002, 14

(Suppl. S1), S61–S80. [CrossRef]
56. Piazza, F.; Colella, M.; Cinelli, G.; Lopez, F.; Donati, I.; Sacco, P. Effect of α-Amylase on the Structure of Chia Seed Mucilage.

Biomimetics 2022, 7, 141. [CrossRef]
57. Yadav, R.K.; Devi, L.L.; Singh, A.P. Brassinosteroids in plant growth and development. In Plant Hormones in Crop Improvement;

Academic Press: Cambridge, MA, USA, 2023; pp. 185–203.
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