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Simple Summary: Heterodera filipjevi, the cereal cyst nematode, is one of the most globally recognized
and economically important nematodes on wheat. As some other cyst nematodes that are plant root
parasites, the cysts of H. filipjevi survive in soil for years and shelter a large number of microbes.
The aims of this study were to investigate the diversity of mycobiota associated with the cereal cyst
nematode H. filipjevi, to infer phylogenetic relationships of the found mycobiota, and to explore
the ecological connection between fungi and the field history, including the potential of fungi in
bioremediation and the production of novel bioactive compounds. The study showed that the
fungal species associated with the H. filipjevi cysts belong to diverse phyla, including Ascomycota,
Basidiomycota, and Mucoromycota. The members of Ascomycota (Fusarium avenaceum, Sarocladium
kiliense, Setophoma terrestris) are plant parasites, indicating that crops were host plants for fungal
infection of recent origin. The members of Basidiomycota (Bjerkandera adusta, Cerrena unicolor, Trametes
hirsuta, etc.) are wood-decay fungi, the presence of which in agricultural soil indicates that forests
were the preceding plants.

Abstract: Cereals, particularly wheat, are staple food of the people from the Balkans, dating back
to the Neolithic age. In Serbia, cereals are predominantly grown in its northern part between 44◦

and 45.5◦ N of the Pannonian Plain. One of the most economically important nematodes on wheat
is the cereal cyst nematode, Heterodera filipjevi. Cysts of H. filipjevi survive in soil for years and
shelter a large number of microorganisms. The aims of this study were to investigate the diversity of
mycobiota associated with the cereal cyst nematode H. filipjevi, to infer phylogenetic relationships of
the found mycobiota, and to explore the ecological connection between fungi and the field history,
including the potential of fungi in bioremediation and the production of novel bioactive compounds.
Cysts were isolated from soil samples with a Spears apparatus and collected on a 150-µm sieve. The
cysts were placed on potato dextrose agar, and maintained for two weeks at 27◦C. Following fungal
isolation and colony growing, the fungal DNA was extracted, the ITS region was amplified, and
PCR products were sequenced. The study showed that the isolated fungal species belong to diverse
phyla, including Ascomycota, Basidiomycota, and Mucoromycota. Ascomycota is represented by
the families Clavicipitaceae, Sarocladiaceae, Nectriaceae, and Phaeosphaeriaceae. Basidiomycota
is represented by the families Cerrenaceae, Polyporaceae, Phanerochaetaceae, and Meruliaceae,
and the order Cantharellales. The family Mortierellaceae represents Mucoromycota. The members
of Ascomycota and Basidiomycota both depict the field history. Ascomycota indicate the fungal
infection is of recent origin, while Basidiomycota point toward the preceding host plants, enabling
the plant field colonization history to be traced chronologically.
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1. Introduction

Growing cereals in the Balkans in the region around the Danube and Pannonian
Basin dates back to the Neolithic age [1]. Cereals, particularly wheat, were and still are
a staple food of the people from this region. In Serbia, cereals are predominantly grown
in its northern part between 44◦ and 45.5◦ N of the Pannonian Plain. Heterodera filipjevi,
also known as the wheat cyst nematode, is one of three main species of the Cereal Cyst
Nematode complex, which are the most globally recognized and economically important
nematodes on wheat [2]. Cysts are swollen females containing eggs and juveniles, while
males have a short life span and they are rarely found in soil. As some other cyst nematodes,
the cysts of H. filipjevi survive in soil for years and shelter a large number of microorganisms,
the presence of which can lead to cyst death and population decline [3]. Natural openings
(e.g., the mouth, anus, and the vulva) are the entrances of fungal cyst invasion [4]. Fungi
hold important positions among the microorganisms by their antagonistic behavior, and
some of them have shown great potential as biocontrol agents [5].

The fungal antagonists of nematodes generally comprise four groups, the nematode-
trapping fungi, endoparasites, parasites of nematode cysts and eggs, and fungi producing
toxic metabolites [6]. Arthrobotrys sp. forms traps that take many forms including sticky
knobs, sticky nets, or rings. During the physical contact between nematodes and fungi,
the ring expands rapidly crushing the prey, which is then digested within hours. It is well
recognized that species of the Basidiomycota are the best degraders of wood. Most signifi-
cantly, the genus Nematoctonus (syn. Hohenbuehelia) produces both cellulases and ligninases,
the principal enzymes used by wood-decay fungi [7]. The obligate endoparasitic fungus
Meria coniospora (syn. Drechmeria coniospora) lives its entire vegetative life within infected
nematodes. Conidia of M. coniospora infect the nematode Panagrellus redivivus mainly in
the mouth region [8]. Nematophthora gynophila causes total destruction of Heterodera avenae
cysts in less than seven days [9]. Acremonium strictum (syn. Sarocladium strictum) and
Fusarium oxysporum are the main parasites in eggs of H. schachtii [10]. The most frequent
egg parasites that developed in eggs of H. avenae were Verticillium spp. (including V.
chlamydosporium, syn. Pochonia chlamydosporia) and Paecilomyces carneus (syn. Metarhizium
carneum) [11]. Combined application of Paecilomyces lilacinus (syn. Purpureocillium lilac-
inum) and Monacrosporium lysipagum (syn. Dactylella lysipaga) reduced 65% of H. avenae
cysts [12]. Metabarcoding of the fungal classes isolated from the soybean cyst nematode
H. glycines revealedfOrbiliomycetes, Dothideomycetes, Eurotiomycetes, Sordariomycetes,
Leotiomycetes, and Pezizomycetes in Ascomycota, the Agaricomycetes in Basidiomycota,
the Glomeromycetes and Mortierellomycetes in Mucoromycota [13]. Fusarium oxysporum
produced culture filtrates toxic to nematodes. These metabolites reduced Meloidogyne
incognita mobility within 10 min of exposure. The second-stage juveniles were initially inac-
tivated within a few minutes of exposure, but with exposure of 24 h, 100% of the juveniles
were dead [14]. Flavipin, a low molecular weight metabolite of the fungus Chaetomium
globosum is responsible for most of the nematode-antagonistic activity [15].

The aims of this study were to investigate the diversity of mycobiota associated
with the cereal cyst nematode H. filipjevi, to infer phylogenetic relationships of the found
mycobiota, based on the Maximum likelihood and Bayesian phylogeny of the internal
transcribed spacer sequence region (ITS), and to explore the ecological connection between
fungi and the field history, including the potential of fungi in bioremediation and the
production of novel bioactive compounds.

2. Materials and Methods
2.1. Isolation of Nematodes and Fungi

The cysts of H. filipjevi were found in the following localities of the Pannonian Plain:
Ada (45◦48′ N; 20◦07′ E), Dobric (44◦41′ N; 19◦34′ E), Feketic (45◦38′ N; 19◦39′ E), Indjija
(45◦03′ N; 20◦05′ E), Kula (45◦36′ N; 19◦29′ E), Mol (45◦45′ N; 20◦05′ E), and Veliki Radinci
(45◦02′ N; 19◦39′ E). Cereals, i.e., wheat, were in rotation with sugar beet and maize.
After wheat harvest, 50 soil subsamples/hectare were taken to form one kilogram of
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a mixed sample [16]. Using the elutriator of Spears [17], which can process both dry
and wet soil samples, cysts were separated and collected on a 150-µm sieve. Cysts of
the wheat nematode were morphologically identified, and then the species identity was
confirmed by molecular methods. Heterodera filipjevi was found in a single population
in all localities, except in Kula, where it was detected in a mixed population with H.
schachtii. Thirty randomly selected cysts from each location were sterilized applying
the procedure of Heungens et al. [18]. The cysts were placed on potato dextrose agar
(PDA) containing antibiotics (bensylpenicillin K+bensylpenicillin-procaine, 200.000 i.u.
+600.000 i.u., 200 mg/L) and maintained for two weeks at 27 ◦C. After emergence of fungi
on PDA, the fungi were subcultured by aseptically transferring small pieces of mycelium
or spores to fresh PDA [19] using a dissecting microscope and pure cultures of each isolates
were maintained in PDA slant tubes at room temperature. Air-dried cysts [20] were sputter-
coated with gold, and viewed with a Jeol JSM-6460 LV scanning electron microscope to
examine fungal cyst colonization.

2.2. Molecular Study

The extraction of DNA from the fungi (and nematodes) was performed with the
DNeasy Blood and Tissue Kit (Qiagen) according to the manufacturer’s procedure, using
approximately 10 mm of fungal tissue scraped from freshly-grown mycelium or one cyst.
The ITS1-5.8S-ITS2 region was used for sequencing of fungi and the same protocol and
primers were used for nematodes. Amplification of the internal transcribed spacer (ITS)
region was performed by using 2234C and 3126T primers [21]. The PCR reaction mixture
consisted of 1× PCR reaction buffer, 0.2 µM of forward and reverse primers, 200 µM
dNTPs, 0.1 U/µL Taq Fermentas, 1 µL of DNA template, and nuclease-free water to a total
volume of 20 µL. The protocol for the PCR reaction was carried out with the following
parameters: 95 ◦C for 120 s followed by 35 cycles consisting of 95 ◦C for 30 s, 55 ◦C for
30 s, and 72 ◦C for 90 s. The reaction mixture was then incubated at 72 ◦C for 3 min [22].
Following the purification and sequencing of the obtained PCR products, the sequences
were deposited in The National Center for Biotechnology Information nucleotide database
(USA), under accession numbers MW485436-MW485447. Phylogenetic analyses were
carried out employing Maximum likelihood (ML) and Bayesian inference (BI), generated
by PhyML 3.1 [23], and MrBayes 3.1.2 [24] programs, respectively. The sequence alignment
was performed with the ClustalW module of Mega 4 [25]. The Maximum likelihood
dendrogram was obtained with the General Time Reversible model (GTR), invariable sites
and gamma distribution (GTR+I+G). The consensus tree with 50% majority rule obtained
by Bayesian inference was created by 1.6 × 106 generations of Markov Chain Monte Carlo,
sampling each 100th generation and “burnin” function of 20%. The nucleotide evolution
model was the GTR+I+G as well. Branch supports higher than 70% were shown next to
the node. Heterodera filipjevi and H. avenae served as outgroups.

3. Results and Discussion

Cysts i.e., swollen females, containing eggs and second-stage juveniles, represent
an ideal growth medium for diverse microorganisms. By its shape (Figure 1), a cyst is
a closed “micro system” with proteins, lipids, chitin, carbohydrates, and other organic
compounds [26] that can be utilized by microorganisms as a nutrition source. The fungal
cyst colonization often starts via natural openings e.g., the vulva, located in a conical
posterior part of the female body (Figure 2).
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The results revealed that the mycobiota isolated from H. filipjevi cysts are represented
by diverse taxa. Both ML and BI dendrograms are in agreement and generated the same
clades. The two main clades corresponding to the phyla Ascomycota and Basidiomycota
are separated by the Mucoromycota clade connected to the order Cantharellales, the order
of uncertain taxonomic position. The frequency of Ascomycota within the total number of
cultured cysts was 20.5% with Pochonia as the most prevalent species, while the frequency of
Basidiomycota was 50% with Bjerkandera spp. as the most common basidiomycetous fungi.
The least percentage pertains to Mucoromycota and Linnemannia species (2%). Ascomycota
occurred in plots with intensive agricultural production, while Basidiomycota was more
related to small-scale producers.

The Ascomycota clade consists of four subclades representing the families Clavicip-
itaceae with Pochonia chlamydosporia, Sarocladiaceae, and the representative Sarocladium
kiliense, and the family Nectriaceae with Fusarium avenaceum. The families belong to the
order Hypocreales. A subclade of the family Phaeosphaeriaceae (Setophoma terrestris) of
the order Pleosporales is linked to the latter. The Basidiomycota clade is comprised of
five subclades represented by the families Cerrenaceae (Cerrena unicolor), Polyporaceae
(Trametes hirsuta), polyphyletic Phanerochaetaceae (Bjerkandera adusta and B. albocinerea)
and a distinct subclade with Phlebiopsis spp., and the family Meruliaceae (Phlebia/Mycoacia
spp.), all affiliated to the order Polyporales and the class Agaricomycetes.

Pochonia chlamydosporia is a commonly found egg parasite in nematode suppressive
soils. The fungus can remain saprotrophic in soil in the absence of both plant and nematode
hosts. Pochonia spp. are found to be endophytes in some Gramineae and Solanaceae species
colonizing the roots [27]. Pochonia chlamydosporia was found to produce phosphatases,
enzymes that can degrade organic phosphate compounds. In addition, the fungus was
able to solubilize inorganic phosphate and produce acetic, citric, and propionic acids [28].
Citric acid also extracted from Aspergillus candidus and a citric acid standard, each tested
at 50 mg mL−1 in water, decreased egg hatching of second-stage juveniles of Meloidogyne
incognita by more than 94% [29]. Pochonia chlamydosporia was found to parasitize eggs of
the beet cyst nematode H. schachtii [30]. Heterodera filipjevi and H. schachtii were frequently
found in mixed populations [31] and apparently have the same fungal parasites.

Acremonium kiliense and A. zeae were transferred to the genus Sarocladium, phylogenet-
ically distinct from the Acremonium strictum clade, according to the combined SSU/LSU
analysis [32]. Several species of the genera Acremonium and Sarocladium caused brown
spots on bagged apples [33]. Sarocladium kiliense was found to possess both antifungal and
antinematode properties. Treatment of the leaf pieces with Sarocladium kiliense conidia for
one or three days prior to inoculation with Diaporthe (syn. Phomopsis) longicolla, a seedborne
fungal disease that causes yield losses and reduced seed quality of soybean, eliminated
pycnidial development completely [34]. Methanol extracts from mycelium of Sarocladium
kiliense (0.3 mg mL−1) and fungal culture filtrate (1 mL) induced 35–37% mortality of
Meloidogyne incognita second-stage juveniles [35].

Fungi of the genus Fusarium are worldwide pathogens of cereals. The metabolites
produced by Fusarium avenaceum include: moniliformin, beauvericin, enniatins, chlamy-
dosporols, chrysogine, acetamido-butenolide, antibiotic Y, fusarins, aurofusarin, etc. [36].
Fusarium avenaceum reduced wheat yield up to 25% in a field experiment in Switzerland [37].
Fusarium spp. caused 34–52% mortality of M. incognita second-stage juveniles in in vitro
studies [38].

Setophoma terrestris is designated as one of the most serious pathogens in tropical
and subtropical soils [39]. Among several tested fungi, Setophoma terrestris were shown to
decompose various glucosinolates [40]. Pyrenochaeta (syn. Setophoma) terrestris reduced 60%
egg hatching of second-stage juveniles of the soybean cyst nematode H. glycines [41].

The members of the order Polyporales of the Basidiomycota clade belong to the white
rot fungi or wood-decay fungi and represent a source for prospective novel producers and
novel compounds [42] and also important agents for bioremediation.
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The molecular phylogenetic analysis of white rot fungi, confirmed that the genera My-
coacia and Mycoaciella, as well as Merulius, should be considered as synonyms of Phlebia [43].
In this study, Phlebia was nested within two previously named Mycoacia species in both
dendrograms. The white rot fungus Phlebia sp. mg-60 produced ethanol directly from
cellulose, glucose, and xylose, and could be considered a promising bioprocessing agent in
biomass fermentation [44].

Phlebiopsis gigantea invades the sapwood and degrades resin and other wood extrac-
tives, demonstrating that the fungus is an ideal candidate for use in biological processing. It
was found that P. gigantea, when applied to cut stumps, could inhibit subsequent coloniza-
tion by the pathogen Heterobasidion annosum, a root rot fungus [45]. Phlebia and Phlebiopsis
species were not able to infect or destroy Aphelenchoides spp. [46], nematodes that usually
inhabit aerial parts of plants.

Bjerkandera adusta and its sister species B. albocinerea species were originally described
from temperate Europe and Brazil, respectively, growing mainly on dead deciduous
hardwood logs [47]. Polycyclic aromatic hydrocarbons are high-risk pollutants that affect
human health because of their carcinogenic and mutagenic effects. It has been proposed
that ligninolytic enzymes are key enzymes in the degradation of benzopyrene by B. adusta
SM46, which suggests its bioattenuation and bioremediation potential [48]. Bjerkandera
adusta strain had low activity against juveniles of the nematode Steinernema carpocapsae [49].

Trametes hirsuta MTCC-1171 could use ferulic acid as a sole carbon source. Ferulic acid
is being considered as an environmental pollutant, since wine distilleries, oil, and paper
processing industries produce effluents containing ferulic acid [50]. Trametes versicolor,
performing as a plant growth promoter, exhibited an increase in wheat grain yield of
37%, as well as straw yield of 27% as compared to non-colonized plants [51]. Trametes
trogii cultured on the glucose-peptone agar showed low activity against juveniles of the
nematode S. carpocapsae [49].

Cerrena unicolor produces laccases, copper-containing oxidoreductive enzymes, which
reduce oxygen to water and, typically, oxidize a phenolic substrate demonstrating its
suitability for environmental detoxification [52]. The other species, Cerrena (syn. Trametes)
maxima, has the potential to degrade the herbicide atrazine [53].

Lichenicolous fungi, such as Burgoa spp., are a highly specialized and successful group
of organisms that develop on lichens and form numerous ecological associations with
them [54]. Lichens are ubiquitous organisms that inhabit even extreme environments e.g.,
Antarctica [55]. The basidiomycetous, bulbilliferous Burgoa spp. were isolated from Populus
wood [56], biodeteriorated murals, plaster, and stone walls [57]. In this study, Burgoa
verzuoliana was phylogenetically placed as the closest taxon to Mortierella/Linnemannia as a
distinct clade being genetically closer to Basidiomycota.

Mortierella i.e., Linnemannia, a cosmopolitan soil fungus, was found to possess nu-
merous biodegradation abilities. Recent studies have shown that M. elongata isolated
from Populus is able to promote its growth. Mortierella elongata isolates PMI 624 and
PMI 93 increased the plant height, leaf area, and plant dry weight of watermelon, maize,
tomato,andsquash. Mortierella had a significant role in soil carbon and phosphorous cy-
cling, and chitin degradation [58], in increasing the levels of plant indole acetic acid and
plant biomass [59], and in degradation of volatile compounds from different hydrocarbon
fuels [60]. Among various microorganisms screened for arachidonic acid productivity, a
precursor of prostaglandin, involved in inflammatory processes [61], an isolated fungus
identified as Mortierella elongata strain IS-5, was found to show the highest productivity [62].
To stabilize Mortierellaceae taxonomy the genus Linnemannia was erected to include the
monophyletic gamsii clade, which contains the L. elongata complex, L. gamsii, L. amoeboidea,
and related species [63]. Mortierella globalpina was demonstrated to prey upon Meloidogyne
chitwoodi by adhering a fungal hypha to the nematode cuticle and consequently consume
the nematode [64].

Among wood-decay fungi, there is a host preference between gymnosperms and
angiosperms. Bjerkandera adusta, Cerrena unicolor, Fomes fomentarius, Irpex lacteus, Trametes
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hirsuta, and T. versicolor were exclusively found on angiosperms. Birch, poplar, and wil-
low trees were the preferential hosts for Bjerkandera adusta, Cerrena unicolor, Phlebia spp.
andTrametes hirsuta [65], the fungal species also found in this study and reported as endo-
phytes from multiple hosts [66]. There is a lack of available nitrogen in wood and, therefore,
nematophagous fungi (which showed good ability to colonize wood) satisfy their nitrogen
requirements by capturing nematodes [7]. Endophytes can produce the same or similar
secondary metabolites as their host plants. The endophytic fungus Taxomyces andreanae
produced the same compound-Taxol as its host Taxus brevifolia [67]. The fungal endophyte
of the cinnamon (Cinnamomum zeylanicum), Muscodor albus (syn. Induratia alba) was found to
produce volatile antimicrobial compounds with bactericidal and fungicidal properties [68].
Since it has recently been found that Cinnamomum cassia and C. burmanii essential oils have
the highest nematicidal activity on a psychrophilic panagrolaimid nematode [69], probably
the same fungal endophyte would have a similar nematicidal effect.

It was not unexpected that the plant parasitic fungi might occur in crops and sub-
sequently they could be transferred to soil. In contrast, the species of the phylum Basid-
iomycota (Phlebia nothofagi, Phlebiopsis ravenelii, Bjerkandera adusta, Trametes hirsuta, and
Cerrena unicolor) were reported to be associated with birch, poplar, and willow forest ecosys-
tems [65], but their presence was surprising in agricultural soil of the Pannonian Plain. The
explanation was found through the analysis of historical data.

Several authors of the Principate period of the Roman Empire testify to the fact that
the Roman province of Pannonia was a densely wooded area. Classical authors refer to a
whole range of different species used: oak, beech, fir, hazel, ash, alder, as well as different
types of willow [70]. The forests of Slavonia and Srem (The Southern Pannonia) were also
described by the Austrian subjects Friedrich Wilhelm von Taube and Franz Stefan Engel,
in the second half of the 18th century [71]. In order to protect the Serbian natural values
in this area, the Institute for Nature Conservation of Serbia designated two zones mostly
covered by willow and poplar forests and Canadian poplar plantations [72]. Recently,
the two localities of the ancient beech forests in Fruska gora were included in Europe
world heritage sites, witnessing the presence of beeches in the ancient Pannonian Plain [73].
Ancient and modern historical data indicate that forests, especially deciduous forests were
the preceding plants before the Pannonian Plain was turned into arable land. The area was
occupied with beech, birch, oak, poplar, and willow trees that were typical hosts of the
found basidiomycetous species. Yet there still exist scattered deciduous forests and trees in
the vicinity of the studied localities.

4. Conclusions

Regarding the higher fungal taxonomy, the study showed that isolated fungal species
belong to diverse phyla, such as Ascomycota, Basidiomycota, and Mucoromycota. The
phylum Ascomycota is divided into the order Hypocreales, represented by the families
Clavicipitaceae, Sarocladiaceae, and Nectriaceae, and the order Pleosporales, represented
by the family Phaeosphaeriaceae. The phylum Basidiomycota is divided into the order
Polyporales, represented by the families Cerrenaceae, Polyporaceae, Phanerochaetaceae,
and Meruliaceae, and the order Cantharellales of uncertain taxonomic position, but phy-
logenetically affiliated to the Basidiomycota clade. The phylum Mucoromycota is linked
to the order Cantharellales and also phylogenetically closer to Basidiomycota than to As-
comycota. Most of Basidiomycota are wood-decay fungi with a great enzymatic potential
for bioremediation in polluted environments. The isolated basidiomycetous species have a
host preference towards deciduous trees, such as birch, poplar, and willow trees, historical
data of which confirmed that in the Pannonian Plain massive deforestation occurred during
centuries, turning forest land into arable land. The members of Ascomycota are plant and
nematode parasites, indicating that crops were host plants for fungal infection of recent
origin. The members of Basidiomycota are wood-decay fungi, the presence of which in
agricultural soil indicates that forests were the preceding plants enabling the plant field
colonization history to be traced chronologically.
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