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Abstract: Infections with phytoplasma present one of the most significant biotic stresses influencing
plant health, growth, and production. The phytoplasma ‘Candidatus Phytoplasma solani’ infects
a variety of plant species. This pathogen impacts the physiological and morphological charac-
teristics of plants causing stunting, yellowing, leaf curling, and other symptoms that can lead to
significant economic losses. The aim of this study was to determine biochemical changes in peony
(Paeonia tenuifolia L.), mint (Mentha × piperita L.), and dill (Anethum graveolens L.) induced by ‘Ca.
Phytoplasma solani’ in Serbia as well as to predict the impact of the biotic stress using artificial neural
network (ANN) modeling. The phylogenetic position of the Serbian ‘Ca. Phytoplasma solani’ strains
originated from the tested hosts using 16S rRNA (peony and carrot strains) and plsC (mint and dill
strains) sequences indicated by their genetic homogeneity despite the host of origin. Biochemical
parameters significantly differed in asymptomatic and symptomatic plants, except for total antho-
cyanidins contents in dill and the capacity of peony and mint extracts to neutralize superoxide anions
and hydroxyl radicals, respectively. Principal Component Analysis (PCA) showed a correlation
between different chemical parameters and revealed a clear separation among the samples. Based on
the ANN performance, the optimal number of hidden neurons for the calculation of TS, RG, PAL, LP,
NBT, •OH, TP, TT, Tflav, Tpro, Tant, DPPH, and Car was nine (using MLP 8-9-13), as it produced
high r2 values (1.000 during the training period) and low SOS values. Developing an effective early
warning system for the detection of plant diseases in different plant species is critical for improving
crop yield and quality.

Keywords: ‘Candidatus Phytoplasma solani’; peony; mint; dill; carrot; biotic stress

1. Introduction

Plants undergo a wide range of biotic and abiotic stresses that limit their proper
growth [1]. Biotic stress in plants is caused by living organisms, including fungi, bacteria,
phytoplasma, viruses, nematodes, insects, and weeds, causing diseases or damage [2].
Specific ion channels and kinase cascades and reactive oxygen species (ROS), as well
as phytohormones (e.g., abscisic acid, salicylic acid, jasmonic acid, and ethylene), are
activated in plants following exposure to stress [3]. Phytoplasmas are plant pathogenic
bacteria belonging to the class Mollicutes. They lack cell walls and exclusively inhabit
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the nutrient-rich phloem tissue of plants [4]. Diseases caused by phytoplasmas pose a
threat to agricultural production by leading to substantial losses in yield and the quality
of plants. More than 600 diverse diseases have been reported worldwide, mainly on
vegetable crops belonging to the families Apiaceae, Asteraceae, Cucurbitaceae, Fabaceae, and
Solanaceae [5–8]. The symptoms of diseases caused by phytoplasmas include yellowing
or reddening of leaves, phyllody, stunting, virescence, shortened internodes, big bud,
little leaf, witches’ broom or proliferation, leaf curl, giant calyx, floral malformation, and
vascular discoloration [7,9]. Phytoplasmas are transmitted from plant to plant by phloem-
feeding insect vectors, and they propagate within the cytoplasm of both insects and plants.
Phytoplasma attack causes various changes in terms of physiological, biochemical, and
metabolic pathways [4,5,7,10,11]. For example, phytoplasma infections have been known
to decrease chlorophyll synthesis [5,12] and protein content or to increase peroxidase
activity [11]. Our previous studies [5,7] indicated biochemical changes in common evening-
primrose (Oenothera biennis L.) and carrot (Daucus carota L.) resulting from infection by
‘Candidatus Phytoplasma solani’. Changes in O. biennis resulted in a significant increase in
the peroxidation of lipids, phenylalanine ammonia-lyase activity, total sugars, polyphenols,
and anthocyanins content, along with a decrease in photosynthetic pigments and total
flavonoids [5]. The oxidative damage of membranes in carrot cells was accompanied by a
decrease in the content of photosynthetic pigments, as well as a pronounced reduction in
the level of glutathione (GSH) content. Conceivably, anthocyanidins were responsible for
the enhanced antioxidative capacity [7].

Artificial neural networks (ANNs) have found applications in diverse domains for
forecasting outcomes of intricate systems by processing input data. ANNs belong to a
class of machine learning algorithms capable of learning from data and predicting results
with precision and dependability, such as identifying plant diseases. ANNs have exhibited
remarkable potential in predicting biotic stress in plants resulting from diverse pathogens,
enabling real-time plant health monitoring and offering a pre-emptive alert mechanism for
farmers, agronomists, and researchers to forestall disease outbreaks.

The present study aimed to determine biochemical changes induced by ‘Ca. Phyto-
plasma solani’ in the three latest host plants identified in Serbia, including peony (Paeonia
tenuifolia L.), mint (Mentha × piperita L.), and dill (Anethum graveolens L.), and to utilize
these findings to construct an artificial neural network (ANN) model in order to predict the
impact of the biotic stress in these particular plant species.

2. Materials and Methods
2.1. Plant Material

Experiments performed in this study were conceived for three plant species, i.e., P.
tenuifolia, Mentha × piperita, and A. graveolens with externally visible disease symptoms
caused by ’Ca. Phytoplasma solani’ (Figure 1) [13–15]. Plants of each species with symp-
toms (S–symptomatic) and without symptoms (A–asymptomatic) were collected from
Bački Petrovac (45◦21′38′′ N 19◦35′30′′ E) in the Bačka region of Vojvodina, Serbia, at the
“full-bloom” phenophase. The study field belongs to the Institute of Field and Vegetable
Crops, National Institute of the Republic of Serbia (Novi Sad, Serbia), for the purpose of
reproduction and maintenance of seed collection.

A minimum of thirty plants of each tested species (per fifteen randomly selected
asymptomatic and symptomatic plants) were collected at the growing sites. One part of the
collected leaves (two per taken plant) was immersed in liquid nitrogen and further stored
under −20 ◦C, while the other part was dried at ambient temperature in a well-ventilated
place. Previously published results of biochemical changes in D. carota plants infected with
’Ca. Phytoplasma solani’ (Figure 1) in Serbia were used for the comparison in all assays [7].



Horticulturae 2024, 10, 426 3 of 15

Horticulturae 2024, 10, x FOR PEER REVIEW 3 of 15 
 

 

plants infected with ’Ca. Phytoplasma solani’ (Figure 1) in Serbia were used for the 

comparison in all assays [7]. 

 

Figure 1. Symptoms caused by ‘Ca. Phytoplasma solani’ on (A) peony—P. tenuifolia, (B) dill—A. 

graveolens, (C) mint—Mentha × piperita, and (D) carrot—D. carota. 

2.2. Phylogenetic Position of the Tested Serbian ‘Ca. Phytoplasma solani’ Strains 

Phylogenetic analysis was performed to check the position of the five Serbian ‘Ca. 

Phytoplasma solani’ strains originating from the same A. graveolens, P. tenuifolia, Mentha × 

piperita, and D. carota plants as those used for biochemical analysis, in relation to 

Phytoplasma spp. strains from different hosts and countries. Two separate phylogenetic 

trees were constructed based on the previously published sequences of the Serbian 

strains of interest. The first Neighbor-Joining (NJ) phylogenetic tree was constructed 

based on the 16S rRNA sequences for the three Serbian ‘Ca. Phytoplasma solani’ strains 

originating from P. tenuifolia (B15 and B18) [14] and D. carota (ML_NS-2016) [7], as well as 

with 23 comparative Phytoplasma spp. strains belonging to different 16Sr groups (Table 1) 

retrieved from the GenBank database. The tree was rooted with Acholeplasma laidlawii 

strain NCTC10116 (Table 1). 

Table 1. List of Phytoplasma spp. strains from GenBank used to construct the phylogenetic tree 

based on 16S rRNA sequences. 

Species 
16Sr Group 

Classification 
Strain Isolation Source Country Acc. No. 

‘Ca. Phytoplasma solani’ XII-A 

B15 a P. tenuifolia Serbia KC960487 

B18 a P. tenuifolia Serbia KF614623 

ML_NS-2016 a D. carota Serbia MF503627 

Ei22 Euscelis incisus Serbia MN047263 

grape8 Vitis vinifera Iran MK392488 

Amaranthus26 Amaranthus sp. - MN007088 

NSRTCPso6 Prunus domestica Jordan MH085229 

Rus-AWB804F Medicago sativa Russia KY587525 

Kz22 Citrus sp. Iran MG563790 

P8 Solanum tuberosum Germany PP261349 

Figure 1. Symptoms caused by ‘Ca. Phytoplasma solani’ on (A) peony—P. tenuifolia, (B) dill—A.
graveolens, (C) mint—Mentha × piperita, and (D) carrot—D. carota.

2.2. Phylogenetic Position of the Tested Serbian ‘Ca. Phytoplasma solani’ Strains

Phylogenetic analysis was performed to check the position of the five Serbian ‘Ca.
Phytoplasma solani’ strains originating from the same A. graveolens, P. tenuifolia, Men-
tha × piperita, and D. carota plants as those used for biochemical analysis, in relation to
Phytoplasma spp. strains from different hosts and countries. Two separate phylogenetic
trees were constructed based on the previously published sequences of the Serbian strains
of interest. The first Neighbor-Joining (NJ) phylogenetic tree was constructed based on
the 16S rRNA sequences for the three Serbian ‘Ca. Phytoplasma solani’ strains originat-
ing from P. tenuifolia (B15 and B18) [14] and D. carota (ML_NS-2016) [7], as well as with
23 comparative Phytoplasma spp. strains belonging to different 16Sr groups (Table 1) re-
trieved from the GenBank database. The tree was rooted with Acholeplasma laidlawii strain
NCTC10116 (Table 1).

Table 1. List of Phytoplasma spp. strains from GenBank used to construct the phylogenetic tree based
on 16S rRNA sequences.

Species 16Sr Group
Classification Strain Isolation Source Country Acc. No.

‘Ca. Phytoplasma solani’ XII-A

B15 a P. tenuifolia Serbia KC960487
B18 a P. tenuifolia Serbia KF614623

ML_NS-2016 a D. carota Serbia MF503627
Ei22 Euscelis incisus Serbia MN047263

grape8 Vitis vinifera Iran MK392488
Amaranthus26 Amaranthus sp. - MN007088

NSRTCPso6 Prunus domestica Jordan MH085229
Rus-AWB804F Medicago sativa Russia KY587525

Kz22 Citrus sp. Iran MG563790
P8 Solanum tuberosum Germany PP261349

284/09 Nicotiana tabacum - NC_022588

Strawberry lethal yellows
phytoplasma (CPA) XII-B variant NZSb11 - Australia and

New Zealand CP002548
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Table 1. Cont.

Species 16Sr Group
Classification Strain Isolation Source Country Acc. No.

Aster yellows witches’-broom
phytoplasma I-A AYWB Lactuca sativa USA CP000061

‘Catharanthus roseus’ aster yellows
phytoplasma I-B De Villa Catharanthus roseus South Africa CP035949

Maize bushy stunt phytoplasma I-B M3 Dalbulus maidis Brazil CP015149

Paulownia witches’-broom phytoplasma I-D Zhengzhou Paulownia China CP066882

Peanut witches’-broom phytoplasma II-A T48 Areca catechu China OR239773

‘Echinacea purpurea’ witches’-broom
phytoplasma II-A NCHU2014 Catharanthus roseus Taiwan CP040925

‘Parthenium sp.’ phyllody phytoplasma II-D PR08 Parthenium
hysterophorus India CP097207

‘Ca. Phytoplasma ziziphi’ V-B Jwb-nky Ziziphus jujuba China CP025121

‘Ca. Phytoplasma luffae’ VIII-A NCHU2019 Luffa aegyptiaca Taiwan CP054393

‘Ca. Phytoplasma mali’ X-A AT - - CU469464

‘Ca. Phytoplasma oryzae’ XI-A HN2022 - China CP116038

Acholeplasma laidlawii b - NCTC10116 - - LS483439
a Serbian Ca. Phytoplasma solani strains of interest in this study; b outgroup.

The second NJ phylogenetic tree was constructed based on the plsC gene (1-acyl-
sn-glycerol-3-phosphate acyltransferase) sequences with the remaining two Serbian ‘Ca.
Phytoplasma solani’ strains of interest, originating from A. graveolens (STOL2) [13] and
Mentha × piperita (STOL3) [15], and 13 comparative Phytoplasma spp. strains from different
hosts and countries (Table 2), which were also from GenBank. This tree was rooted with
Acholeplasma laidlawii strain DSM 23060 (Table 2).

Table 2. List of Phytoplasma spp. strains from GenBank used to construct the phylogenetic tree based
on plsC gene sequences.

Species Strain Isolation Source Country Acc. No.

‘Ca. Phytoplasma solani’

STOL2 a A. graveolens Serbia KT281866
STOL3 a Mentha × piperita Serbia KT281865
284/09 Nicotiana tabacum - FO393427
231/09 - - FO393428

Stol11_3_C Convolvulus arvensis - JQ977746
Stol11_1_C Convolvulus arvensis - JQ977744
Stol11_2_U Urtica dioica - JQ977745

‘Rubus fruticosus’ stolbur phytoplasma
Stol11-

Rubus1/2010-
Bg

Rubus fruticosus Bulgaria JN561701

‘Convolvulus arvensis’
stolbur phytoplasma

Stol11-
Conv2/2010-Bg Convolvulus arvensis Bulgaria JN561700

‘Convolvulus arvensis’
stolbur phytoplasma

Stol11-
Conv12/2011-

Bg
Convolvulus arvensis Bulgaria JN561699

Lavender decline stolbur phytoplasma Stol 11 - - AF447596

Strawberry lethal yellows
phytoplasma (CPA) NZSb11 - - CP002548

’Ca. Phytoplasma australiense’ - - - AM422018

Acholeplasma laidlawii b DSM 23060 NZ_QRDS01000001
a Serbian ‘Ca. Phytoplasma solani’ strains of interest in this study; b outgroup.
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Before the construction of each phylogenetic tree, sequences of all strains were aligned
to the same size (710 nt for 16S rRNA; 399 nt for plsC) in the BioEdit v.7.0 program using the
ClustalW Multiple alignment function. Trees were constructed in Mega7 software, using
the bootstrap value of 1000. The Kimura two-parameter nucleotide substitution model was
used to compute genetic distances [14].

2.3. Biochemical Analyses of Peony, Mint, Dill, and Carrot Infected by ‘Ca. Phytoplasma solani’

Biochemical analysis includes the determination of parameters related to total sugars
(TS), reduced glutathione (GSH), lipid peroxidation intensity (LP), phenylalanine ammonia-
lyase (PAL) activity, photosynthetic pigments (total chlorophyll a and b and carotenoids),
total polyphenolics (TP) and polyphenolic groups (Tflav-flavonoids, TT-tannins, Tpro-
proanthocyanidins, Tant-anthocyanidins), and antioxidant capacity. All methods stated
were explained in great detail within their respective references, as well as in our previous
papers [7,16]. Total sugars (TS), or precisely, total carbohydrate content expressed as mg glu-
cose equivalents/g fresh weight (fw), were determined from aqueous extracts with sulfuric
acid–UV method [15]. Reduced glutathione (GSH) [17] and lipid peroxidation intensity
(LP) [18] were determined from trichloroacetic acid extracts (5 and 20%, respectively), while
0.05 M sodium borate buffer was used for phenylalanine ammonia-lyase (PAL) activity [19].
These parameters were expressed as µmol GSH/g fw, nmol MDA equivalents/g fw, and
U/g fw for GSH, LP, and PAL, respectively. Photosynthetic pigments (total chlorophyll
a and b and carotenoids) were extracted with 80% acetone, as determined by the Von
Wettstein (1957) [20] method and expressed as mg/g dry weight (dw). Total polyphenolics
(TP) and polyphenolic groups (Tflav-flavonoids, TT-tannins, Tpro-proanthocyanidins, Tant-
anthocyanidins) and antioxidant tests were extracted with an acidified methanolic solution
(MeOH:H2O:CH3COOH, 140:50:10). All total polyphenolic groups were expressed as mg/g
dw and determined by methods explained in detail in following references: TP, TT, and
TPro in Makkar (2003) [21] and TFlav in Pękal and Pyrzynska (2014) [22] and Tant by Lee
et al. (2005) [23]. Antioxidant capacity was determined through three antioxidant tests, in-
cluding NBT, •OH, and DPPH, by testing the scavenging of 1.1-diphenyl-2-picrylhydrazyl
free radicals, superoxide anions (O2•−), and hydroxyl radicals (•OH), respectively. Inhibi-
tion (%) of these reactive species in comparison to the control was determined according to
Panda (2012) [24], Ahmed (2013) [25], and Sánchez-Moreno (2002) [26], respectively.

2.4. Principal Component Analysis (PCA)

Principal Component Analysis (PCA) is a statistical method commonly used in ex-
ploratory data analysis [27] to identify patterns and relationships within a dataset. The
transformation is based on the eigenvalue decomposition of a data correlation matrix [28],
which ensures that the first principal component captures the highest possible variance in
the data. This technique can reveal spatial relationships among processing parameters and
facilitate the identification of underlying patterns within complex datasets.

2.5. Artificial Neural Network (ANN) Modeling

During the training cycle for artificial neural network (ANN) modeling, all input and
output data were normalized to improve the network’s behavior. The optimal number of
hidden layers and neurons in each layer was determined through trial and error to achieve
good performance. A multi-layer perceptron (MLP) model with three layers (input, hidden,
and output) was chosen for this study, as it is known to be effective at approximating
nonlinear functions [29]. In this study, the optimal number of hidden neurons was found
to be ten. The ANN scheme is presented in Figure 2. The Broyden–Fletcher–Goldfarb–
Shanno (BFGS) algorithm was used for ANN modeling, and the training process was
repeated multiple times to achieve the best performance considering parameter variability.
Successful training was determined when the learning and cross-validation curves (Sum of
Squares vs. training cycles) approached zero. The ANN was tested using the best weights
obtained during the training step, and the coefficient of determination (r2) and Sum of
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Squares (SOS) were used to evaluate the performance (i.e., accuracy) of the ANN. Artificial
neural networks show high performance in predicting TS, RG, PAL, LP, TP, TT, Tflav, Tpro,
Tant, NBT, •OH, DPPH, Tcha, Tchb, and Car by calculating weight coefficients and biases
with respect to characteristic input parameters (logical variables including plant type and
treatment) [30,31]. The basic equation (Equation (1)) for calculating the output data of
artificial neural networks is as follows:

Y = f1(W2· f2(W1·X + B1) + B2) (1)

where Y represents the output value, f 1 and f 2 represent the transfer function in the hidden
and output layer, and X represents the matrix of the input layer [30].
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Figure 2. ANN topology with three layers (input, output, and hidden) with weights, biases, and
transfer functions.

2.6. Global Sensitivity Analysis

Yoon’s global sensitivity equation was used to calculate the relative impact of the input
parameters on the output variables, according to the weight coefficients of the developed
ANN models [32,33]:

RIij(%) =

n
∑

k=0
(wik·wkj)

m
∑

i=0

∣∣∣∣ n
∑

k=0
(wik·wkj)

∣∣∣∣ ·100% (2)

where w—weight coefficient in the ANN model, i—input variable, j—output variable,
k—hidden neuron, n—number of hidden neurons, and m—number of inputs.

3. Results
3.1. Phylogenetic Position of ‘Ca. Phytoplasma solani’ Strains

The NJ phylogenetic tree based on the 16S rRNA sequences of three tested Serbian ‘Ca.
Phytoplasma solani’ strains from P. tenuifolia (B15 and B18) and D. carota (ML_NS-2016)
and the comparative Phytoplasma spp. strains from different hosts/countries is presented
in Figure 3. Based on the constructed tree, all tested/comparative ‘Ca. Phytoplasma solani’
strains were placed in the same tree cluster (the XII-A 16Sr Group) showing genetic ho-
mogeneity among themselves regardless of the host/country of origin. The remaining
Phytoplasma spp. strains belonging to 16Sr Groups I (A, B, and D), II (A and D), VIII-A,
X-A, XI-A, and XII-B were clearly separated in other tree branches/clusters, each corre-
sponding to a specific 16Sr Group. Acholeplasma laidlawii strain NCTC10116 was placed on
a monophyletic tree branch, as an outgroup (Figure 3).
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3.2. Biochemical Analyses of Peony, Mint, Dill, and Carrot Infected by ‘Ca. Phytoplasma solani’

There was a significant difference for most of the tested biochemical parameters when
asymptomatic and symptomatic plants were compared, except for total anthocyanidins
contents in dill and the capacity of peony and mint extracts to neutralize superoxide anions
and hydroxyl radicals, respectively (Table 3).

The total sugars content accumulated in symptomatic leaves was twice the amount
of the sugars in healthy leaves. Lipid peroxidation intensity was clearly and dramatically
higher in the leaves of symptomatic plants, reaching twice the values of LP for the asymp-
tomatic dill and peony plants. Reduced glutathione content was enhanced slightly but
significantly in all tested species. Although the activity of PAL was markedly higher in
the symptomatic leaves (1.25–3.5 times higher), only in mint and dill were the amounts
of phenolic compounds positively correlated with this trend (possibly because of higher
tannin and proanthocyanidins contents); however, the amount of phenolics in peony plants
was lower in symptomatic leaves (except for anthocyanidins content) than in those of the
other two species. Photosynthetic pigment contents (chlorophyll a and b and carotenoids)
significantly decreased (2.45–5.08 times) in the leaves of all tested species. Although there
was a difference in antioxidant capacity between asymptomatic and symptomatic plants
within species, the mint and dill plants had enhanced antioxidant activity against super-
oxide anions (NBT test higher than 80% of neutralized radicals), while peony plants had
pronounced antioxidant activity against DPPH radicals (DPPH test higher than 90% of
neutralized radicals).

3.3. Principal Component Analysis (PCA)

In this study, PCA was used to investigate the correlation between different chemical
parameters tested, such as TS, RG, PAL, LP, TP, TT, Tflav, Tpro, Tant, NBT, •OH, DPPH,
Tcha, Tchb, and Car. The plant samples, including mint AL, mint SL, dill AL, dill SL, peony
AL, and peony SL, were observed, and the content of these variables was utilized in the
PCA. The first three principal components generated by the PCA were utilized to display
the results visually in a PCA graph, which effectively differentiated the six plant samples.
By applying PCA to the provided dataset, it was possible to differentiate between the
samples based on the processing parameters used. This technique was utilized as a tool
in exploratory data analysis to characterize and distinguish the input parameters for the
neural network (as shown in Figure 5).

The results of the PCA (shown in Figure 5) reveal a clear separation between the
samples, indicating good discrimination. The first three principal components (having
eigenvalues of 5.15, 3.36, and 2.17), which account for 71.22% (the total variance explained
by principal components was 34.34%; 22.42%, and 14.46%) of the total variability, were
found to be sufficient for representing the data. The contents of TS (11.74%, based on
correlations), PAL (9.80%), LP (8.68%), TP (11.60%), TT (11.53%), and DPPH (14.55%) had
the most negative contributions to the calculation of the first factor coordinate (PC1), while
the content of Tcha (7.01%) exerted the most positive influence on the PC1 coordinate calcu-
lation. Meanwhile, the content of RG (8.11%, based on correlations), Tflav (12.36%), Tcha
(12.86%), and Tchb (12.80%) had negative influences on the second principal component
(PCA), while Tpro (14.03%) and Car (11.38%) had positive influences on PC2. The content
of LP (7.61%, based on correlations) and Tant (25.21%) had the most negative influence on
the third principal component (PC3), while the content of NBT (9.03%), •OH (8.34%), TP
(8.25%), TT (8.32%), and Tpro (9.26%) exerted the most positive influence on the calculation
of the PC3 coordinate.

According to the PCA, the carrot SR and carrot AR samples were characterized by
the highest Car content, while peony SL and peony AL were noted to obtain the most
prominent value of DPPH, TS, TT TP, PAL, and RG content. The sample mint AL was
characterized by augmented Tflav, Tcha, and Tchb contents.
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Table 3. Biochemical parameters of healthy (A—asymptomatic) and ‘Ca. Phytoplasma solani’-infected (S—symptomatic) leaves of mint (Mentha × piperita), dill (A.
graveolens), and peony (P. tenuifolia) plants. Data on carrot (D. carota) plants served as a comparison in this study.

Carrot a

(Daucus carota)
Mint

(Mentha × piperita)
Dill

(Anethum graveolens)
Peony

(Paeonia tenuifolia)

A S A S A S A S

Total sugars (% fw)
X ± Se 5.79 ± 0.01 5.15 ± 0.01 3.45 ± 0.08 6.62 ± 0.01 3.44 ± 0.02 5.15 ± 0.01 4.80 ± 0.01 11.98 ± 0.01

t-test A/S * * * *

Reduced glutathione (µmol GSH/g fw)
X ± Se 2.75 ± 0.01 3.10 ± 0.01 3.28 ± 0.01 3.93 ± 0.01 4.21 ± 0.01 5.07 ± 0.02 4.55 ± 0.01 5.01 ± 0.01

t-test A/S * * * *

Phenylalanine ammonia-lyase (U/g fw)
X ± Se 258.82 ± 0.29 70.94 ± 0.03 164.33 ± 0.09 300.91 ± 0.06 247.63 ± 0.19 310.20 ± 0.42 413.51 ± 0.28 1450.21 ± 0.41

t-test A/S nd * * *

Lipid peroxidation (nmol MDA/g fw)
X ± Se 871.57 ± 0.26 1064.43 ± 3.80 590.77 ± 1.04 641.43 ± 0.30 597.37 ± 0.86 1476.27 ± 0.64 722.83 ± 0.12 1636.60 ± 1.70

A/S * * * *

Total polyphenols (mg/g dw)
X ± Se 4.03 ± 0.02 1.42 ± 0.01 4.10 ± 0.01 7.45 ± 0.06 5.17 ± 0.02 6.27 ± 0.01 94.02 ± 0.16 86.56 ± 0.23

t-test A/S * * * *

Total tannins (mg/g dw)
X ± Se 3.33 ± 0.04 1.18 ± 0.03 2.66 ± 0.02 5.83 ± 0.03 1.94 ± 0.01 2.34 ± 0.01 82.18 ± 0.02 77.35 ± 0.08

t-test A/S * * * *

Total flavonoids (mg/g dw)
X ± Se 0.043 ± 0.0 0.000 ± 0.0 0.263 ± 0.002 0.275 ± 0.002 0.032 ± 0.001 0.022 ± 0.001 0.050 ± 0.000 0.051 ± 0.001

t-test A/S nd * * *

Total proanthocyanidins (mg/g dw)
X ± Se 0.40 ± 0.0 6.02 ± 0.01 0.87 ± 0.01 0.79 ± 0.01 0.86 ± 0.01 2.20 ± 0.01 4.75 ± 0.01 3.61 ± 0.01

t-test A/S * * * *

Total anthocyanidins (mg/g dw)
X ± Se 0.003 ± 0.0 0.000 ± 0.0 0.003 ± 0.00 0.000 ± 0.00 0.009 ± 0.01 0.012 ± 0.00 0.003 ± 0.00 0.137 ± 0.00

t-test A/S nd * nd *

Total chlorophyll a (mg/g dw)
X ± Se 0.78 ± 0.01 0.54 ± 0.01 1.86 ± 0.01 0.46 ± 0.00 0.93 ± 0.01 0.27 ± 0.00 0.61 ± 0.01 0.12 ± 0.01

t-test A/S * * * *

Total chlorophyll b (mg/g dw)
X ± Se 0.18 ± 0.0 0.15 ± 0.0 0.77 ± 0.00 0.21 ± 0.01 0.42 ± 0.01 0.14 ± 0.00 0.24 ± 0.00 0.05 ± 0.00

t-test A/S * * * *

Carotenoids (mg/g dw)
X ± Se 0.36 ± 0.01 0.17 ± 0.0 0.39 ± 0.00 0.12 ± 0.00 0.35 ± 0.01 0.08 ± 0.00 0.29 ± 0.00 0.12 ± 0.00

t-test A/S * * * *
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Table 3. Cont.

Carrot a

(Daucus carota)
Mint

(Mentha × piperita)
Dill

(Anethum graveolens)
Peony

(Paeonia tenuifolia)

A S A S A S A S

NBT test (% neutralized radicals)
X ± Se 20.33 ± 0.28 82.57 ± 0.23 93.53 ± 0.29 88.37 ± 0.09 82.10 ± 0.06 88.40 ± 0.06 44.30 ± 0.35 52.60 ± 0.23

t-test A/S * * * nd

•OH test (% neutralized radicals)
X ± Se 10.81 ± 2.42 0.69 ± 0.04 16.40 ± 0.15 15.17 ± 1.94 35.37 ± 1.28 4.70 ± 0.12 36.30 ± 0.46 30.90 ± 0.06

t-test A/S * nd * *

DPPH test (% neutralized radicals)
X ± Se 19.95 ± 0.02 10.90 ± 0.01 14.30 ± 0.01 15.43 ± 0.12 13.74 ± 0.08 22.80 ± 0.20 92.91 ± 0.06 90.87 ± 0.02

t-test A/S * * * *
*—difference between A and S according to the t-test (p < 0.05); nd—no difference. a carrot data retrieved from a previous study by Mitrović et al. [7] and not the primary result of
this work.
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3.4. Neurons in the ANN Hidden Layer

One of the crucial steps in designing an ANN is to determine the appropriate number
of hidden layers and neurons in each layer, which depend on the complexity of the input–
output relationship. As this relationship becomes more complex, more neurons need to
be added to the hidden layer(s) [32]. The optimal number of hidden neurons was selected
by minimizing the difference between the predicted and desired output values, using the
Sum of Squares (SOS) as the performance indicator during testing. The used MLP model
was identified according to StatSoft Statistica’s notation, which indicates the number of
inputs, neurons in the hidden layer(s), and outputs. Based on the ANN performance, it
was observed that the optimal number of hidden neurons for the calculation of TS, RG,
PAL, LP, NBT, •OH, TP, TT, Tflav, Tpro, Tant, DPPH, and Car was nine (using MLP 8-9-13),
as it produced high r2 values (1.000 during the training period) and low SOS values. The
optimal networks used for predicting TS, RG, PAL, LP, NBT, •OH, TP, TT, Tflav, Tpro, Tant,
DPPH, and Car were able to produce reasonably accurate output values across a wide range
of process variables. In most cases, the predicted values were very close to the experimental
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or target values, as evidenced by the high r2 values obtained from the ANN models. The
complexity of the ANN models was quite high, with 211 weight biases required for TS, RG,
PAL, LP, NBT, •OH, TP, TT, Tflav, Tpro, Tant, DPPH, and Car calculations. However, the
models were able to fit the experimental data quite well, owing to the high nonlinearity of
the system under investigation [31,32]. During the training period, the r2 values between
the experimental measurements and the ANN model outputs for TS, RG, PAL, LP, NBT,
•OH, TP, TT, Tflav, Tpro, Tant, DPPH, and Car were equal to 1.000.

3.5. Sensitivity Analysis

A sensitivity analysis was conducted to determine the relative influence (RI) of inputs
(such as plant type and treatment) on TS, RG, PAL, LP, NBT, •OH, TP, TT, Tflav, Tpro, Tant,
DPPH, Tcha, Tchb, and Car, The results, shown in Figure 6, indicate how outputs change
with respect to infinitesimal changes in inputs, reflecting both experimental errors and the
inputs’ influence on the outputs.
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4. Discussion

Phytoplasmas belonging to the “stolbur” group 16SrXII-A (‘Ca. Phytoplasma solani’)
are known to affect a wide range of wild and cultivated plants worldwide, causing severe
economic damage [34]. Since its first report on pepper in Serbia in 1949, ‘Ca. Phytoplasma
solani’ has been described on diverse host plants (carrot, corn, grapevine, peony, pepper-
mint, potato, etc.) in this country [12,35–40]. Species designation within phytoplasmas was
primarily based on conserved 16S rRNA gene; however, since it does not allow distinc-
tions among closely related Ca. Phytoplasma species, recent studies are encouraging the
additional use of less conserved, housekeeping genes to enhance the resolving power [41].
However, the use of 16S rRNA sequences in this study allowed us to determine phyloge-
netic relatedness among the tested Serbian ‘Ca. Phytoplasma solani’ strains. The performed
phylogenetic analysis with 16S rRNA sequences of the three Serbian ‘Ca. Phytoplasma
solani’ strains from P. tenuifolia (B15 and B18) and D. carota (ML_NS-2016) and various
reference Phytoplasma spp. strains belonging to different 16Sr Groups indicated an affilia-
tion between the tested strains and the 16SrXII-A Group and genetic homogeneity with
the other (tested/reference) ‘Ca. Phytoplasma solani’ strains placed within this group,
regardless of the host or country of origin. Additionally, earlier, D. carota strain ML_NS-
2016 was confirmed to be genetically homogenous with different ‘Ca. Phytoplasma solani’
strains originating from various countries (Bulgaria, Canada, China, France, Greece, Italy,
Poland, Russia, Serbia, and Turkey) and hosts (corn, grapevine, parsley, parsnip, pea,
periwinkle, potato, red sage, tobacco, tomato, and valerian), all belonging to the “stolbur”
group (16SrXII-A) [7]. Similar to phylogenetic analysis based on 16S rRNA, a phylogenetic
tree constructed based on the sequences of plsC gene, encoding the 1-acyl-sn-glycerol-
3-phosphate acyltransferase enzyme involved in glycerophospholipid metabolism [42],
placed the tested Serbian (A. graveolens strain STOL2 and Mentha × piperita strain STOL3)
and comparative ‘Ca. Phytoplasma solani’ strains in the same “stolbur” tree cluster. This
gene was discriminatory enough to distinguish ‘Ca. Phytoplasma australiense’ (first added
as Strawberry lethal yellows phytoplasma) from the “stolbur” group. Some future research
on Serbian ‘Ca. phytoplasma solani’ strains should be directed toward the sequencing and
analysis of multiple housekeeping genes such as tuf, secY, vmp1, stamp, etc. [8,43], which
could eventually reveal some genetic differences.

Artificial neural networks (ANNs) have found application in diverse domains for
forecasting the outcomes of intricate systems by processing input data. ANNs belong to a
class of machine learning algorithms capable of learning from data and predicting results
with precision and dependability, such as identifying plant diseases. ANNs have exhibited
remarkable potential in predicting biotic stress in plants resulting from diverse pathogens,
enabling real-time plant health monitoring and offering a pre-emptive alert mechanism
for farmers, agronomists, and researchers to forestall disease outbreaks. Developing an
effective early warning system for the detection of plant diseases in different plant species is
critical for improving crop yield and quality. The identification and prevention of diseases
of crops are essential for improving crop prediction. Based on our results, the ANN model
can be considered as an efficient computational methodology for modeling and predicting
the effect of the biotic stress in different plants induced by ‘Ca. Phytoplasma solani’.
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37. Duduk, B.; Botti, S.; Ivanović, M.; Krstić, B.; Dukić, N.; Bertaccini, A. Identification of phytoplasmas associated with grapevine
yellows in Serbia. J. Phytopathol. 2004, 152, 575–579. [CrossRef]

38. Duduk, B.; Bertaccini, A. Corn with symptoms of reddening: New host of stolbur phytoplasma. Plant Dis. 2006, 90, 1313–1319.
[CrossRef] [PubMed]
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43. Contaldo, N.; Stepanović, J.; Pacini, F.; Bertaccini, A.; Duduk, B. Molecular Variability and Host Distribution of ‘Candidatus
Phytoplasma Solani’ Strains from Different Geographic Origins. Microorganisms 2021, 9, 2530. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1093/jaoac/88.5.1269
https://www.ncbi.nlm.nih.gov/pubmed/16385975
https://doi.org/10.4314/ajtcam.v10i1.21
https://doi.org/10.1177/1082013202008003770
https://doi.org/10.1016/j.fuproc.2013.07.006
https://doi.org/10.1002/wics.101
https://doi.org/10.1016/j.rse.2009.05.014
https://doi.org/10.1016/j.agwat.2013.11.007
https://doi.org/10.1057/jors.1993.6
https://doi.org/10.1099/ijs.0.044750-0
https://www.ncbi.nlm.nih.gov/pubmed/23334879
https://doi.org/10.1007/s10658-015-0800-y
https://doi.org/10.1111/j.1439-0434.2004.00898.x
https://doi.org/10.1094/PD-90-1313
https://www.ncbi.nlm.nih.gov/pubmed/30780938
https://doi.org/10.14601/Phytopathol_Mediterr-11681
https://doi.org/10.3390/applmicrobiol3030075
https://doi.org/10.3390/microorganisms9122530

	Introduction 
	Materials and Methods 
	Plant Material 
	Phylogenetic Position of the Tested Serbian ‘Ca. Phytoplasma solani’ Strains 
	Biochemical Analyses of Peony, Mint, Dill, and Carrot Infected by ‘Ca. Phytoplasma solani’ 
	Principal Component Analysis (PCA) 
	Artificial Neural Network (ANN) Modeling 
	Global Sensitivity Analysis 

	Results 
	Phylogenetic Position of ‘Ca. Phytoplasma solani’ Strains 
	Biochemical Analyses of Peony, Mint, Dill, and Carrot Infected by ‘Ca. Phytoplasma solani’ 
	Principal Component Analysis (PCA) 
	Neurons in the ANN Hidden Layer 
	Sensitivity Analysis 

	Discussion 
	References

