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Abstract: The present study examined the effects of Candidatus Phytoplasma solani infection on
antioxidative metabolism in leaves and roots of carrot (Daucus carota L.). Disease symptoms appeared
at the end of June in the form of the chlorosis on some of the leaves, which became intensely red
one week later, while the previously healthy leaves from the same branch becme chlorotic. A few
days later, all leaves from the infected leaf branch were intensely red. Infected plants also had slower
growth compared to the healthy ones with fewer leaf branches developed. The roots of infected
plants were less developed, seared, or gummy with or without brown-colored root hair. The presence
of the pathogen was detected by sequencing the 16S rRNA. National Center for Biotechnology
Information (NCBI) BLAST analyses of the obtained sequence revealed 100% identity of tested strain
with deposited Ca. Phytoplasma solani strains from various countries and hosts, all belonging
to the “stolbur” group (16SrXII-A). Identity of 99.74% was found when the tested Serbian strain
(MF503627) was compared with the reference stolbur strain STOL11 (AF248959). The oxidative
damage of membranes in carrot cells was accompanied by a decrease in the content of photosynthetic
pigments. Furthermore, for the determination of specific scavenging properties of the extracts,
in vitro antioxidant assay was performed. In phytoplasma-infected carrot leaves, there was a greater
reduction in the level of glutathione content (GSH); however; flavonoids and anthocyanidins seem to
be responsible for the accompanied increased antioxidative capacity against hydroxyl radical and
hydrogen peroxide.

Keywords: Daucus carota L.; phytoplasma; antioxidants; pigments; polyphenols; sugar

1. Introduction

Phytoplasmas are plant pathogens from the class Mollicutes that inhabit phloem sieve
elements of host plants [1]. A wide range of visible symptoms caused by phytoplasmas are
described: leaves yellowing; phyllody; virescence; Witches’ broom or proliferation; heavy
leaves with thick laminas, edges rolled up or down, stiff to the touch and brittle; small
malformed crinkled leaves; thick bark above the phloem interruption point; phloem necro-
sis or vein necrosis; vascular discoloration; leaf veins that are pale or purple, prominent,
and winding; leaf petioles that are shorter and thicker than regular leaves; small round
fruits with long petioles; basal suckers, even visible from a distance; rosetting occurring in
shoot apices [2,3]. Other symptoms are more generic (for groups of pathogens that are not
phytoplasmas) such as chlorosis, necrosis, flower abortion, small fruits, stunting, decline,
etc. [2]. Symptoms such as chlorophyll photooxidation are the result of oxidative stress,
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which occurs due to the accumulation of reactive oxygen species (ROS), which is a common
feature of most abiotic and biotic stresses of plants. On the other hand, an “oxidative
burst”, a phenomenon related to the pathogen attack, initiates a cascade of signaling path-
ways, including the plant stress hormone network. Plant hormones such as jasmonic (JA)
and salicylic acid (SA) participate directly or indirectly in the generation of the oxidative
burst, superoxide, and hydrogen peroxide in the extracellular apoplast–cell wall matrix by
enzymes such as the plasmalemma-localized NADPH oxidases and peroxidases [4].

Members of the Candidatus Phytoplasma genus are obligate parasites that require
plant host and insect vectors for spread and survival. Unlike those biotrophic pathogens
that do not require insect vectors, and which activate the JA-dependent pathway but inhibit
the SA-dependent pathway [5], phytoplasma appears to have a contrasting effect on the
plant defense system. It has been suggested that some of the secreting effectors, which are
systematically transported through phloem sieve cells, suppress JA synthesis, and thus com-
promise the plant defense system [6]. Based on the data on the regulation of phenylalanine
ammonia-lyase activity (PAL) accompanied by an accumulation of hydroxycinnamates and
inhibition of flavonoid biosynthesis in phytoplasma-infected plants, Musetti [7] suggested
that polyphenols are involved in plant defense against phytoplasma. In our previous
study, similar changes in the pattern of inducible polyphenols in Oenothera biennis plants
were obtained when infected by Candidatus Phytoplasma solani [8]. SA plays a crucial
role in numerous plant defense responses, such as local and systemic pathogen-induced
defense gene activation, the oxidative burst, and pathogen-induced cell death [9–13]. In ad-
dition to their role in signaling (SA), some classes of polyphenols (hydroxycinnamates and
flavonoids) are considered important antioxidants [14,15].

In Serbia, phytoplasmas have been found in cereals, vegetables, spices, and medicinal
plants [16–19]. Since the beginning of the XXI century, the carrot (Daucus carota L.) has
been considered an important vegetable crop in Serbia, showing a trend of increasing the
surfaces on which it is grown over the years. The first occurrence of phytoplasmas on
carrot in Serbia has been reported by Duduk et al. [20]. In later work, Duduk et al. [21]
stated that the aster yellows phytoplasma belonging to subgroup 16SrI-A was prevalent in
Serbian carrot fields. In the last few years, the symptoms of reddening or purpling leaves,
as well as smaller and poor main roots have been noticed in several production regions
of Serbia.

The aim of the study was to identify the strain of Ca. Phytoplasma solani and to
test the response to the infection in diseased carrot plants. The extent of oxidative stress
induced by the infection was measured by levels of reduced glutathione content (GSH)
and polyphenols. Damage in phytoplasma-infected carrot plants was determined by
measuring a malondialdehyde (MDA), which is a product of oxidative membrane degra-
dation, and bleaching of photosynthetic pigments. Furthermore, in vitro assay for the
determination of specific scavenging properties of leaves and roots extracts was performed
to reveal the ability of tested plants to cope with oxidative burst caused by determined
phytoplasma pathogen.

2. Results
2.1. Symptoms Observation

The first disease symptoms were observed at the end of June, in the form of chlorosis
on some of the leaves. One week later, chlorotic leaves became an intense red color,
while the previously healthy leaves from the same branch become chlorotic. A few days
later, all leaves from the infected branch were intensely red (Figure 1a). Infected plants
had also slower growth compared to the healthy ones with fewer leaf branches developed
(Figure 1b). The roots of infected plants were less developed, seared, or gummy with root
hair brown colored or without them (Figure 1b).
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Figure 1. Symptoms of Ca. Phytoplasma solani on carrot plants (a) leaves with intensive red color
(b) diseased plant (left) and healthy plant (right).

During the colelection of carrot samples (end of June, beginning of July), climatic
conditions (temperature, rainfall) did not contribute to the disease incidence, although they
were different in both years. During June and July, average temeratures in 2016 (21.7 ◦C
and 23.3 ◦C, respectively) were lower than in 2017 (23.0 ◦C and 23.8 ◦C, respectively) and
precipitations in 2016 (143.2 mm and 68.4 mm, respectively) were higher than in 2017
(65.7 mm and 12.0 mm, respectively) (Figure 2).
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Figure 2. Meteorological data for study periods (2016–2017), location Futog, Vojvodina, Serbia.



Plants 2021, 10, 337 4 of 14

2.2. Molecular Identification of Candidatus Phytoplasma Solani

One clear band on the position of 1784 bp was obtained after PCR amplification of
tested Serbian strains from symptomatic carrot leaves using two universal primers pairs
(P1/P7 and P1A/P7A). Band presence was not visible in any of the negative controls.
National Center for Biotechnology Information (NCBI) BLAST analyses of the obtained
sequences of Serbian carrot strains (1553 nt in size) revealed 100% identity with already
deposited sequences of Ca. Phytoplasma solani strains from various countries and hosts
(Table 1), all belonging to the Stolbur group (16SrXII). BLAST analysis also showed a
99.74% homology of Serbian carrot strains with reference stolbur strain STOL11 (AF248959).
One Serbian strain was deposited to the NCBI database under the accession number
MF503627. The constructed neighbor-joining phylogenetic tree, which is presented in
Figure 3, shows relatedness among Serbian Ca. Phytoplasma solani carrot strain, reference,
and other strains of this species, as well as reference Ca. Phytoplasma (australiense,
japonicum, and fragariae) strains from the NCBI database. Despite differences in the host
of origin, country of isolation, and symptoms they cause, all Ca. Phytoplasma solani strains
were grouped in one phylogenetic tree cluster, showing no presence of genetic diversity
among this species. Reference strains of Ca. Phytoplasma japonicum and Ca. Phytoplasma
fragariae formed another group among the same cluster as Ca. Phytoplasma solani,
showing greater phylogenetic relation among themselves than with Ca. Phytoplasma
solani strains, including the Serbian strains from carrot Ca. The Phytoplasma australiense
strain AGYP is separated and closely related to other tested species from the 16S rXII group,
indicating that they share a common ancestor.

Table 1. Strains used for phylogenetic analysis.

Strain Host Country Acc. Number

Ca. Phytoplasma solani
121/09 Corn Serbia JQ730750
142/09 Tobacco Serbia JQ730739
224/09 Valerian Serbia JQ730742
231/09 Parsley Serbia JQ730741
138/10 Grapevine Serbia JQ730746
204/10 Periwinkle Serbia JQ730744
161/16 Parsnip Serbia KY579338
STOL11 (STOL) * Periwinkle France AF248959
241/13 Corn Bulgaria KF907506
5043 Tomato Greece JX311953
G66 Pea Poland JN887313
SX-CP Red sage China KT844645
06PS085 Grapevine Canada EU086529
Rus-PPT124 a Potato Russia EU344890
TPSP b Potato Turkey HM485579
BN-Op30 c Grapevine Italy EU836652
Ca. Phytoplasma australiense
AGYP * Grapevine Australia L76865
Ca. Phytoplasma japonicum * Hydrangea Japan AB010425
Ca. Phytoplasma fragariae * Strawberry Lithuania DQ086423
Acholeplasma palmae L33734

* Reference strain for certain species. a Russia potato purple top phytoplasma (Ca. Phytoplasma solani strain
causing potato purple top). b TPSP—Turkish potato stolbur phytoplasma (Ca. Phytoplasma solani strain
causing potato stolbur). c Ca. Phytoplasma solani strain causing bois noir. AGYP—Australian grapevine
yellows phytoplasma.
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2.3. Oxidative Stress and Antioxidative Activity

We observed that carrot plants at the same developmental stage responded differently
to the infection with Ca. Phytoplasma solani in two successive years, based on a larger
difference in lipid peroxidation between asymptomatic and symptomatic leaves and roots
measured in 2017. However, in 2016, a smaller accumulation of sugars, reduced glutathione,
and total polyphenols were accompanied by intensified cell membrane peroxidation in
asymptomatic leaves and roots (Table 2).

Table 2. Total carbohydrate content (%fresh weight (fw)), reduced glutathione content (GSH, µmol GSH/g fw), and lipid
peroxidation intensity (nmol malondialdehyde (MDA)/g fw) in asymptomatic (A) and symptomatic (S) carrot leaves (L)
and roots (R).

2016 2017

Treatments Mean St. Error A/S Mean St. Error A/S 2016/2017

Total sugars

AL 5.79 0.01
*

6.99 0.52
*

*
SL 5.62 0.00 16.61 0.59 *

AR 4.10 0.01
*

12.94 1.48
*

*
SR 5.15 0.01 16.03 0.75 *

Reduced
glutathione

AL 2.75 0.01
*

6.94 0.05
*

*
SL 5.49 0.01 17.88 0.11 *

AR 3.10 0.01
*

2.56 0.05
*

*
SR 3.29 0.01 8.92 0.19 *

Lipid peroxidation
intensity

AL 871.57 0.26
*

70.00 3.70
*

*
SL 1360.13 0.47 198.71 6.63 *

AR 1064.43 3.80
*

108.84 6.17
*

*
SR 1264.00 3.06 188.32 9.03 *

*—differ significantly at p < 0.05 (Student’s t-test).
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Almost no difference in the content of total sugars between symptomatic and asymp-
tomatic plants was observed in 2016. However, a significant increase in total sugars was
measured in symptomatic leaves in comparison to asymptomatic leaves of carrot grown in
2017. The increase in total sugars was accompanied by an almost threefold increase in GSH
level in both symptomatic leaf and root. Despite the activation of antioxidative defense
in plants with symptoms of infection, the degradation of membrane lipids was 10 times
lower in intensity in plants collected in 2016, irrespective of the presence of symptoms.
An impaired antioxidative response (GSH and antioxidative capacity) to infection with Ca.
Phytoplasma solani in 2016 compared to 2017 resulted in about 50% and 20% higher oxida-
tive stress (LP) in symptomatic leaves and roots, respectively. In both years, the activity of
PAL was induced in leaves, but not in root after plant infection. A significant increase was
observed only for 2017 (Table 3).

Table 3. Phenylalanine ammonia-lyase (U/g fw) and polyphenolic compounds content (mg/g dw) in asymptomatic (A)
and symptomatic (S) carrot leaves (L) and roots (R).

2016 2017

Treatment Mean St. Error A/S Mean St. Error A/S 2016/2017

Phenylalanine
ammonia-lyase
activity

AL 258.82 0.29
nd

281.23 3.33
*

nd
SL 336.71 11.00 518.32 12.42 *

AR 70.94 0.03
nd

80.22 2.12
nd

nd
SR 84.85 0.11 100.45 4.70 nd

Total polyphenols

AL 4.03 0.02
*

5.57 0.03
nd

nd
SL 6.88 0.02 5.47 0.01 nd

AR 1.42 0.01
*

1.13 0.01
nd

nd
SR 1.92 0.01 1.34 0.00 nd

Total tannins

AL 3.33 0.04
*

2.32 0.28
nd

nd
SL 3.94 0.01 2.70 0.09 nd

AR 1.18 0.03
*

0.87 0.12
nd

nd
SR 0.76 0.02 1.12 0.10 nd

Total flavonoids

AL 0.043 0.002
*

0.325 0.066
nd

*
SL 0.100 0.006 0.235 0.078 *

AR 0.000 0.000
nd

0.033 0.038
nd

*
SR 0.000 0.000 0.025 0.075 *

Total
proanthocyanidins

AL 0.40 0.00
*

0.003 0.00
*

*
SL 0.15 0.00 0.001 0.00 *

AR 6.02 0.00
*

0.001 0.00
*

*
SR 4.87 0.01 0.002 0.00 *

Total anthocyanins

AL 0.003 0.00
*

0.088 0.00
*

*
SL 0.798 0.00 0.025 0.00 *

AR 0.00 0.00
*

0.00 0.00
nd

nd
SR 0.00 0.00 0.00 0.00 nd

*—differ significantly at p < 0.05 (Student’s t-test), nd—no significant difference.

A slight increase in the accumulation of polyphenols was observed in 2016 but not
in 2017. Proanthocyanidins and anthocyanins had the opposite changes. While proan-
thocyanidins decreased in symptomatic plants, anthocyanins increased. The contents of
both types of photosynthetic pigments, chlorophylls, and carotenoids decreased in plants
with visible symptoms of infection. Contents of chlorophylls in leaves of symptomatic
plants were significantly decreased in comparison to asymptomatic plants, contrary to
anthocyanins, which accumulated in infected leaves (Table 4).
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Table 4. Photosynthetic pigments (mg/g dw) in asymptomatic (A) and symptomatic (S) carrot leaves (L) and roots (R).

2016 2017

Treatment Mean St. Error A/S Mean St. Error A/S 2016/2017

Total chlorophyll a

AL 0.78 0.01
*

0.25 0.08
*

*
SL 0.24 0.01 0.10 0.02 *

AR 0.13 0.01
nd

0.00 0.00
nd

nd
SR 0.15 0.01 0.00 0.00 nd

Total chlorophyll b

AL 0.18 0.00
*

0.15 0.09
*

nd
SL 0.15 0.00 0.06 0.04 *

AR 0.25 0.00
nd

0.00 0.00
nd

*
SR 0.28 0.01 0.00 0.00 *

Total carotenoids

AL 0.36 0.01
*

0.009 0.02
*

*
SL 0.17 0.00 0.002 0.02 *

AR 1.94 0.00
nd

0.200 0.02
nd

nd
SR 1.59 0.00 0.170 0.05 *

*—differ significantly at p < 0.05 (Student’s t-test), nd—no significant difference.

Significant differences between tested years were observed for antioxidant response
to pathogen infection when antioxidant tests (scavenging of superoxide, hydroxyl, and 1.1-
diphenyl-2-picrylhydrazyl (DPPH) radical) were performed (Table 5). If 100% is observed
as maximum antioxidant capacity, extracts of tested carrot organs had poor antioxidant
activity; however, extracts of plants from 2017 had better antioxidant performance than that
from 2016. In 2017, no changes due to infection were observed for any applied antioxidant
test. Antioxidative capacity to scavenge superoxide radical did not change in 2016 as
well, but the scavenging capacity of DPPH and hydroxyl radical increased more than
twice in both plant organs. Interestingly, the induction of hydroxyl radical scavenging
capacity increased 15 times. Antioxidant tests also revealed that infected leaves had better
antioxidant capacity than roots, as an antioxidant response to oxidative stress induced by
infection than root (Table 5).

Table 5. Antioxidant capacity (% of neutralized radicals) in asymptomatic (A) and symptomatic (S) carrot leaves (L) and
roots (R).

2016 2017

Antioxidant test Treatment Mean St. Error A/S Mean St. Error A/S 2016/2017

NBT-test

AL 20.33 0.28
nd

55.89 0.10
nd

*
SL 19.80 0.06 54.93 0.02 *

AR 82.57 0.23
*

67.94 0.02
nd

*
SR 99.23 0.09 80.95 0.00 nd

•OH-test

AL 10.81 0.69
*

69.68 0.06
nd

*
SL 20.32 1.93 55.98 0.01 *

AR 2.42 0.04
*

11.54 0.01
nd

*
AL 39.97 4.16 13.75 0.00 *

DPPH-test

SL 19.95 0.02
*

55.99 0.15
nd

*
AR 32.58 0.22 48.09 1.17 *

SR 10.90 0.01
*

19.52 1.00
nd

*
SR 21.25 0.01 18.49 1.47 nd

*—differ significantly at p < 0.05 (Student’s t-test), nd—no significant difference.
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3. Discussion

Stolbur Ca. Phytoplasma solani is highly distributed through different regions of
Serbia since 1949, when it was discovered for the first time on pepper (Capsicum annuum
L.) [22]. Ever since, disease symptoms caused by this pathogen have appeared on a
wide range of diverse host plants, such as corn (Zea mays L.) [23], tobacco (Nicotiana
tabacum L.) [24], parsnip (Pastinaca sativa L.) [25], grapevine (Vitis vinifera L.) [26], blueberry
(Vaccinium corymbosum L.) [27], periwinkle (Vinca minor L.) [28], etc., depending on whether
the transmission vector belongs to family Cixiidae or Cicadellidae [29]. Mixed infection,
expressed through symptoms of leaves redness, shoot proliferation, and reduced tap roots
quality, caused by phytoplasmas belonging to three 16S rRNA RFLP subgroups—Aster
yellows group 16SrI (A and B) and Stolbur 16SrXII-A subgroup was found on carrot field
in Serbia in 2007 [21]. This stolbur phytoplasma, transmitted by Macrosteles laevis (fam.
Cicadellidae), was revealed to be one of the causal agents of carrot disease for the first
time in Serbia. Mixed infection with both previously mentioned Ca. Phytoplasma solani
groups (16SrI and 16SrXII) was also found in Slovenia, with specific distribution through
the plant—in leaves (16SrI), between root and stem (16SrXII), and with both of them
inhabiting root [30]. A 100% homology of Serbian Ca. Phytoplasma solani strains from
carrot, with stolbur representatives from the NCBI database, indicates the infection caused
by the phytoplasma belonging to group 16SrXII. As it is presented on the phylogenetic tree
(Figure 3), sequencing of the 16S rRNA gene revealed low intra-species genetic diversity
within Ca. Phytoplasma solani, regardless of the host or country of isolation. However,
the detection of molecular variability within this species and other closely related species of
genus Candidatus could be improved through the sequencing of some non-ribosomal DNA-
fragments such as tuf, secY, or vmp1 [31,32]. The previous phylogenetic study conducted by
Quaglino et al. [33], with different Ca. Phytoplasma species (solani, australiense, japonicum,
and fragariae), is in accordance with the results of phylogenetic analysis obtained in this
study (Figure 3), probably indicating an environmentally influenced divergent evolution
of these species from a common ancestor, resulting from different selection pressures and
adaptation on new hosts. Carrot plants infected by Ca. Phytoplasma solani developed
several of the characteristic symptoms for phytoplasmas [34], such as a growth arrest,
a leaf reddening, and chlorophyll bleaching. A previous study reported that the leaf
tissue of O. biennis plants was more vulnerable to the oxidative stress induced by Ca.
Phytoplasma solani compared to the root [8]. Similarly, here, we present that leaves
of carrots infected by Ca. Phytoplasma solani accumulated the product of oxidative
degradation of membranes, MDA, to a much higher extent compared to the root, and with
larger differences measured in 2017. In general, higher contents of soluble sugars and
antioxidants, and lower levels of lipid peroxidation measured in both leaves and roots
of asymptomatic plant branches for 2017 (Table 2), might be explained by the experience
of drought stress due to much lower precipitation during June and by an induction of
cross tolerance, thus by higher antioxidative capacity. In addition to polyphenols, which
preferentially accumulated in symptomatic carrot plants in leaves, a significant role of
GSH in the antioxidative defense of carrot leaves was indicated. However, a twice as
large increase of reduced glutathione and total polyphenols (including anthocyanins) in
symptomatic as in asymptomatic leaves of carrot were not efficient in the antioxidative
protection against lipid peroxidation and degradation of photosynthetic pigments. Despite
a much lower accumulation of total polyphenols and GSH (10%), the oxidative effect on
lipids in roots was less pronounced (18%) compared to the leaf (61%). While roots of
symptomatic plants accumulated carbohydrates by 25% and had a constitutively high
amount of carotenoids, no changes were found in carbohydrate content in the infected
leaves, as it has been reported for other species [8]. The activation of the phenylpropanoid
pathway by a phytoplasma that results in differential accumulation of hydroxycinnamates,
flavonoids, and anthocyanins has been shown for various species [7,8,35]. Results implied
that tested leaves compared to the root of the carrot was preferentially exposed to the
oxidative stress induced by Ca. Phytoplasma solani, which can be explained by (1) favoring
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the photosynthetic electron transfer to molecular oxygen that produces superoxide anion
and other reactive oxygen species (ROS), and (2) impaired antioxidative action against
superoxide anion of leaf extract. While root extracts also had poor scavenging capacity
against superoxide, it is highly efficient against hydroxyl radical as it was shown by
differential scavenging assays. Such activity was inducible, which means it was observed
only in the roots of the symptomatic plants and might be ascribed to carbohydrates,
which may be considered as a part of the plant antioxidative system [36].

4. Materials and Methods
4.1. Symptoms Observation and Sampling of Plant Material

Carrot cultivar Bolero F-1 (Vilmorin, France) was planted in commercial fields in the
second half of April covering 3 ha nearby Futog, Bačka region of Vojvodina, Northern
Serbia (GPS: 45◦15′14.04′′ N, 19◦39′35.01′′ E in 2016; GPS: 45◦15′11.71′′ N, 19◦39′24.65′′ E
in 2017). Monitoring and visual inspection of Ca. Phytoplasma solani development were
performed bi-weekly during the carrot vegetation period. In the middle of July 2016 and
2017, for all experiments in the study, samples were collected from 20 points in the surveyed
field, containing 40 symptomatic plants with intensely red leaves and 20 plants with no
symptoms (Figure 1a,b). No symptoms of other plant pathogens were present on samples.
One part of the plant material was lyophilized, and the other part (fresh) was immediately
stored at temperature −80 ◦C. Extraction procedures were explained within each method.
All experiments were performed in three replicates.

Meteorological data (temperature, precipitation) were monitored over the study years
(2016–2017) from April to September in weather station Futog, nearest to the selected
experimental field (45◦14′ N, 19◦42′ E) (Statistical Office of the Republic of Serbia). Averages
monthly temperatures and precipitations were presented in Figure 2.

4.2. Molecular Identification of Candidatus Phytoplasma Solani

A total DNA from 100 mg of freeze-dried symptomatic carrot leaves was extracted us-
ing a 2% CTAB extraction buffer, according to the protocol described by Li et al. [37].
Extracted DNA was re-suspended in 100 µL of TE buffer and stored at −70 ◦C un-
til use. Nested PCR was performed to obtain nearly full-length 16S rDNA with an ex-
pected size of about 1.8 kb. The first round of PCR was performed with phytoplasma-
specific universal primer pair P1/P7 (5′-AAGAGTTTGATCCTGGCTCAGGATT-3′/5′-
CGTCCTTCATCGGCTCTT-3′) [38,39]. Diluted P1/P7 PCR products (1:10) were afterwards
used as templates to perform another (nested) PCR amplification with P1A/P7A primer
pair (5′-ACGCTGGCGGCGCGCCTAATAC-3′/5′-CCTTCATCGGCTCTTAGTGC-3′) [40].
PCR mix (20 µL) consisted of 12.4 µL of ultrapure DNase/RNase-free water, 2 µL of sample
total DNA, 2 µL of 10 × KAPA Taq Buffer, 1.2 µL of 25 mM MgCl2, 0.2 µL of 20 mM dNTP
mixture, 1 µL of each of the primer sets (10 µM), and 0.2 µL of KAPA Taq polymerase
(5 U µL−1). PCR mix with 2 µL of DNAase/RNase-free water, instead of sample DNA,
served as a negative control in each PCR reaction. Cycling conditions and the number of
cycles for both primer pairs were set as follows: 2 min at 95 ◦C for initial denaturation,
34 cycles of denaturation for 60 s at 95 ◦C, annealing for 120 s at 50 ◦C, and extension for
180 s at 72 ◦C, followed by 10 min at 72 ◦C for final elongation step. PCR products were
visualized on 1% agarose gel stained with ethidium bromide, and they were checked for a
band presence on the predicted position in relation to a 1 kb GeneRuler DNA ladder (Sigma
Life Science Online Product, Sigma-Aldrich, Germany, UK) under UV transilluminator.
PCR products obtained with P1A/P7A primers were purified with Qiagen QIAquick PCR
Purification Kit and sent for sequencing to Macrogen Europe B.V. Meibergdreef 31, 1105 AZ,
Amsterdam, the Netherlands. The obtained sequence of one Serbian carrot strain generated
in this study was deposited into the National Center for Biotechnology Information (NCBI)
GenBank database to get an accession number. The sequence of Serbian carrot strain was
used for further phylogenetic analysis and comparison with other sequences of Ca. Phyto-
plasma spp. available in the GenBank (http://www.ncbi.nlm.nih.gov/BLAST/ (accessed

http://www.ncbi.nlm.nih.gov/BLAST/
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on 12 November 2020)). Phylogenetic analysis was performed to check the relatedness
between strains of three formally described species within Stolbur phytoplasma group
16S rXII, the ones transmitted by polyphagous planthoppers from the Cixiidae family,
to determine the position of tested Serbian strain in relation to them. For this purpose,
sequences of Ca. Phytoplasma solani strains obtained from Serbia and other countries,
affecting diverse host plants, as well as sequences of reference Ca. Phytoplasma strains
(australiense, japonicum, and fragariae), retrieved from the NCBI database were used for
phylogenetic analysis. Strains used for comparison are listed in Table 1. All sequences were
aligned using ClustalW segment, implemented in BioEdit v. 7.0.5 program and used to
construct a neighbor-joining phylogenetic tree in MEGA7 software. The bootstrap value for
tree construction was set to 1000, and genetic distances were computed using the Kimura
two-parameter nucleotide substitution model [41]. The tree was rooted with Acholeplasma
palmae strain (Table 1).

4.3. Determination of Lipid Peroxidation Intensity (LP) and Total Carbohydrate Content (TCC)

The intensity of peroxidation of membrane lipids is measured by the amount of mal-
ondialdehyde (MDA), which is the secondary product of the oxidation of polyunsaturated
fatty acids, as it is explained in method by Hodges et al. [42]. Thiobarbituric acid (TBA)
forms a reaction medium featuring pink-red chromogen (maximal absorbance at 532 nm)
with MDA and is measured against control without TBA. To exclude other interfering
compounds (sugars, anthocyanins, and other phenolics), absorbance was measured at
440, 532 and 600 nm for correction. Lipid peroxidation intensity in carrot leaves and roots
was calculated form formulas (1–3) and expressed as nmol MDA equivalents/g fresh
weight (fw).

A = [(532-600)abs+TBA − (532-600)abs-TBA] (1)

B = [(440-600)abs+TBA − (440-600)abs-TBA] (2)

MDA equivalents (nmol/mL) = (A − B/157,000) × 106 (3)

A modified sulfuric acid-UV method [43] was used for the determination of total
carbohydrate content (TCC). One mL of aqueous plant extract (0.2 g/mL) was added to
3 mL of concentrated sulfuric acid, vortexed for 30 sec, and cooled in ice. After measuring
the absorbance at 315 nm, calculation of TCC was performed using glucose as a standard.
Results were expressed as mg glucose equivalents/g fw. Reduced glutathione (GSH)
content was determined by Rahman et al. [44] and expressed as µmol reduced glutathione
(GSH)/g fw.

4.4. Determination of PAL Activity, Total Polyphenols, Flavonoids, and Anthocyanins

Phenylalanine ammonia-lyase (PAL; EC 4.3.1.5) activity was performed according
to the protocol given by Gerasimova et al. [45]. The content of cinnamic acid in the
extracts was determined at 290 nm in reaction mixture containing L-phenylalanine against
blank solution (1h at 37 ◦C in water-bath). The amount of cinnamic acid produced was
determined from a trans-cinnamic acid standard curve, and PAL activity was expressed
as U/g fw.

Total polyphenols and tannins content was determined by Folin–Ciocalteu method [46]
and expressed as gallic acid equivalents (GAE) in mg/g dry weight (dw). Reaction medium
was 33% Folin–Ciocalteu phenol reagent, plant extract (50% MeOH), and 20% Na2CO3.
Absorbance at 765 nm was recorded after 60 min of incubation at room temperature.
The total tannin content was determined by the same Folin–Ciocalteu procedure after
removal of tannins by adsorption on an insoluble matrix (polyvinylpolypyrrolidone, PVPP).
Calculated values were subtracted from the total phenolic contents, and total tannin
contents were expressed as mg GAE/g dw. The determination of total flavonoids content
was performed according to Pękal and Pyrzynska [47] with plant extract (50% MeOH) and
AlCl3 reagent (0.1 g of AlCl3 and 0.4 g of CH3COONa) in reaction medium. Absorbance
was recorded at 430 nm against a blank, and the amount of flavonoids was calculated as a
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rutin equivalent from the calibration curve of rutin standard solutions and expressed as
mg rutin/g dw.

Proanthocyanidins were determined by a butanol-HCl assay [46]. Prepared MeOH
extracts, butanol-HCl reagent (95:5 butanol-HCl), and 2% ferric reagent (2% ferric ammo-
nium sulfate in 2.0 mol HCl), were kept in a boiling water-bath for 1 h. After cooling,
absorbances were recorded at 550 nm against a blank without the extract. Proanthocyani-
dins were calculated as mg leucoanthocyanidin/g dw. Monomeric anthocyanins contents
were determined using the differential method [48]. The absorbance of methanolic ex-
tracts with two buffer solutions at pH 1 and 4.5 was measured at 510 and 700 nm against
a distilled water control. Total monomeric anthocyanin content was calculated as mg
cyanidin-3-O-glucoside equivalents/g dw.

4.5. Determination of Chlorophylls and Carotenoids Contents

Chlorophyll a and b contents were determined according to method described by von
Wettstein [49]. Fresh leaves were homogenized with 100% acetone by mortar with pestle
and centrifuged (10 min at 4350× g). Absorbance was recorded at 440, 662, and 644 nm.
Chlorophyll a and b contents were calculated from equations described in the applied
method and given as mg/g dw. Total carotenoids content was determined according to
a slightly modified method described by de Carvalho et al. [50]. Plant material, leaves,
and roots were homogenized in a chilled mortar under the dim light and mixed with
cold acetone and petroleum ether. Immediately afterwards, tubes were covered with
aluminum foil, incubated (1 h in a cooled ultrasonic bath), and centrifuged (10 min at
12.857× g). Absorbance of the petroleum ether phase was recorded at 470 nm. The total
carotenoid content was calculated from β-carotene standard curve and expressed as β-
carotene equivalents in mg/g dw.

4.6. Determination of Antioxidant Capacity

Antioxidant capacity was tested by three antioxidant tests that measure the scavenging
activity of 1.1-diphenyl-2-picrylhydrazyl (DPPH) free radicals (DPPH test), superoxide
anion (NBT test), and hydroxyl radical (•OH). The antioxidant activity of methanol dry
extracts was assessed based on the DPPH test [51]. Another two tests were performed
using fresh plant extracts, superoxide anion (O2•-) scavenging activity (NBT test) was
based on a riboflavin-light-NBT system [52], and the hydroxyl radical (•OH) scavenging
activity of extracts was assayed by the method of Sánchez-Moreno [53]. All scavenging
activity tests were expressed as percentage (%) inhibition.

4.7. Data Analysis

Obtained results were expressed as means ± standard error and were tested using
Student’s t-test (p < 0.05). Statistical analyses were performed using STATISTICA for
Windows version 13 (Dell Inc., Aliso Viejo, CA, USA).

5. Conclusions

Ca. Phytoplasma solani accumulated the product of oxidative degradation of mem-
branes, MDA, to much higher extent compared to the root. In addition to polyphenols,
which preferentially accumulated in symptomatic carrot plants in leaves, a significant role
of GSH in the antioxidative defense of carrot leaves was indicated. However, a twice as
large increase of reduced glutathione and total polyphenols (including anthocyanins) in
symptomatic as in asymptomatic leaves of carrot were not efficient in the antioxidative
protection against lipid peroxidation and degradation of photosynthetic pigments. Despite
a much smaller accumulation of total polyphenols and GSH (10%), the oxidative effect on
lipids in roots was less pronounced (18%) compared to the leaves (61%). Results implied
that leaves compared to the root of the carrot were preferentially exposed to the oxidative
stress induced by Ca. Phytoplasma solani, which can be explained by (1) favoring the
photosynthetic electron transfer to molecular oxygen that produces superoxide anion and
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other reactive oxygen species (ROS), and (2) impaired antioxidative action against the
superoxide anion of leaves extracts.

Author Contributions: Conceptualization, I.D. and P.M.; methodology, I.D.; software, B.K.; for-
mal analysis, B.K.; investigation, I.D., P.M., T.P., V.T., resources, I.D., P.M.; writing—original draft
preparation, I.D., P.M., B.K., T.P., S.V.J., A.J. and V.T., writing—review and editing, I.D., T.P., project
administration, I.D., P.M., T.P. and funding acquisition, I.D., P.M., T.P. All authors discussed the
results and contributed to the final manuscript. All authors have read and agreed to the published
version of the manuscript.

Funding: This study was funded by the Ministry of Education, Science and Technological Develop-
ment of the Republic of Serbia (Co. Nos. 451-03-68/2020-14/200032, 451-03-68/2020-14/200010 and
451-03-68/2020-14/200053).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Acknowledgments: We thank the PhD students and scholar who participated in this research.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript,
or in the decision to publish the results.

References
1. Lee, I.M.; Davis, R.E.; Gundersen-Rindal, D.E. Phytoplasma: Phytopathogenic mollicutes. Annu. Rev. Microbiol. 2000, 54, 221–255.

[CrossRef] [PubMed]
2. Ermacora, P.; Osler, R. Symptoms of Phytoplasma Diseases. In Phytoplasmas. Methods in Molecular Biology; Musetti, R.,

Pagliari, L., Eds.; Humana Press: New York, NY, USA, 2019; Volume 1875, pp. 53–67. [CrossRef]
3. Kumari, S.; Krishnan, N.; Rai, A.B.; Singh, B.; Rao, G.P.; Bertaccini, A. Global status of phytoplasma diseases in vegetable crops.

Front. Microbiol. 2019, 10, 1349. [CrossRef] [PubMed]
4. Foyer, C.H.; Noctor, G. Redox Signaling in Plants. Antioxid. Redox Signal 2013, 18, 2087–2090. [CrossRef]
5. Kazan, K.; Lyons, R. Intervention of phytohormone pathways by pathogen effectors. Plant Cell 2014, 26, 2285–2309. [CrossRef]

[PubMed]
6. Tomkins, M.; Kliot, A.; Marée, A.F.; Hogenhout, S.A. A multi-layered mechanistic modelling approach to understand how effector

genes extend beyond phytoplasma to modulate plant hosts, insect vectors and the environment. Curr. Opin. Plant Biol. 2018,
44, 39–48. [CrossRef] [PubMed]

7. Musetti, R. Biochemical changes in plants infected by phytoplasmas. In Phytoplasmas: Genomes, Plant Hosts and Vectors;
Weintraub, P.G., Jones, P., Eds.; CAB International: Wallingford, UK, 2010; pp. 132–146. [CrossRef]
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