PlantaRum - Repository of the Institute for Plant Protection and Environment
Institute for Plant Protection and Environment
    • English
    • Српски
    • Српски (Serbia)
  • English 
    • English
    • Serbian (Cyrillic)
    • Serbian (Latin)
  • Login
View Item 
  •   PlantaRum
  • IZBIS
  • Radovi istraživača / Researchers' publications
  • View Item
  •   PlantaRum
  • IZBIS
  • Radovi istraživača / Researchers' publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

New insights in dehydration stress behavior of two maize hybrids using advanced distributed reactivity model (DRM). Responses to the impact of 24-epibrassinolide

Thumbnail
2017
483.pdf (6.296Mb)
Authors
Waisi, Hadi
Janković, Bojan
Janković, Marija
Nikolić, Bogdan
Dimkić, Ivica
Lalević, Blažo
Raičević, Vera
Article (Published version)
Metadata
Show full item record
Abstract
Proposed distributed reactivity model of dehydration for seedling parts of two various maize hybrids (ZP434, ZP704) was established. Dehydration stresses were induced thermally, which is also accompanied by response of hybrids to heat stress. It was found that an increased value of activation energy counterparts within radicle dehydration of ZP434, with a high concentration of 24-epibrassinolide (24-EBL) at elevated operating temperatures, probably causes activation of diffusion mechanisms in cutin network and may increases likelihood of formation of free volumes, large enough to accommodate diffusing molecule. Many small random effects were detected and can be correlated with micro-disturbing in a space filled with water caused by thermal gradients, increasing capillary phenomena, and which can induce thermo-capillary migration. The influence of seedling content of various sugars and minerals on dehydration was also examined. Estimated distributed reactivity models indicate a dependen...ce of reactivity on structural arrangements, due to present interactions between water molecules and chemical species within the plant.

Source:
PlOS One, 2017, 12, 6
Publisher:
  • Public Library of Science (PLoS)
Funding / projects:
  • Dynamics of nonlinear physicochemical and biochemical systems with modeling and predicting of their behavior under nonequilibrium conditions (RS-172015)
  • Biodiversity as potential in ecoremediation technologies of degraded ecosystems (RS-31080)
  • Advanced technologies for monitoring and environmental protection from chemical pollutants and radiation burden (RS-43009)

DOI: 10.1371/journal.pone.0179650

ISSN: 1932-6203

PubMed: 28644899

WoS: 000404145100029

Scopus: 2-s2.0-85021290878
[ Google Scholar ]
URI
https://plantarum.izbis.bg.ac.rs/handle/123456789/485
Collections
  • Radovi istraživača / Researchers' publications
Institution/Community
IZBIS
TY  - JOUR
AU  - Waisi, Hadi
AU  - Janković, Bojan
AU  - Janković, Marija
AU  - Nikolić, Bogdan
AU  - Dimkić, Ivica
AU  - Lalević, Blažo
AU  - Raičević, Vera
PY  - 2017
UR  - https://plantarum.izbis.bg.ac.rs/handle/123456789/485
AB  - Proposed distributed reactivity model of dehydration for seedling parts of two various maize hybrids (ZP434, ZP704) was established. Dehydration stresses were induced thermally, which is also accompanied by response of hybrids to heat stress. It was found that an increased value of activation energy counterparts within radicle dehydration of ZP434, with a high concentration of 24-epibrassinolide (24-EBL) at elevated operating temperatures, probably causes activation of diffusion mechanisms in cutin network and may increases likelihood of formation of free volumes, large enough to accommodate diffusing molecule. Many small random effects were detected and can be correlated with micro-disturbing in a space filled with water caused by thermal gradients, increasing capillary phenomena, and which can induce thermo-capillary migration. The influence of seedling content of various sugars and minerals on dehydration was also examined. Estimated distributed reactivity models indicate a dependence of reactivity on structural arrangements, due to present interactions between water molecules and chemical species within the plant.
PB  - Public Library of Science (PLoS)
T2  - PlOS One
T1  - New insights in dehydration stress behavior of two maize hybrids using advanced distributed reactivity model (DRM). Responses to the impact of 24-epibrassinolide
IS  - 6
VL  - 12
DO  - 10.1371/journal.pone.0179650
ER  - 
@article{
author = "Waisi, Hadi and Janković, Bojan and Janković, Marija and Nikolić, Bogdan and Dimkić, Ivica and Lalević, Blažo and Raičević, Vera",
year = "2017",
abstract = "Proposed distributed reactivity model of dehydration for seedling parts of two various maize hybrids (ZP434, ZP704) was established. Dehydration stresses were induced thermally, which is also accompanied by response of hybrids to heat stress. It was found that an increased value of activation energy counterparts within radicle dehydration of ZP434, with a high concentration of 24-epibrassinolide (24-EBL) at elevated operating temperatures, probably causes activation of diffusion mechanisms in cutin network and may increases likelihood of formation of free volumes, large enough to accommodate diffusing molecule. Many small random effects were detected and can be correlated with micro-disturbing in a space filled with water caused by thermal gradients, increasing capillary phenomena, and which can induce thermo-capillary migration. The influence of seedling content of various sugars and minerals on dehydration was also examined. Estimated distributed reactivity models indicate a dependence of reactivity on structural arrangements, due to present interactions between water molecules and chemical species within the plant.",
publisher = "Public Library of Science (PLoS)",
journal = "PlOS One",
title = "New insights in dehydration stress behavior of two maize hybrids using advanced distributed reactivity model (DRM). Responses to the impact of 24-epibrassinolide",
number = "6",
volume = "12",
doi = "10.1371/journal.pone.0179650"
}
Waisi, H., Janković, B., Janković, M., Nikolić, B., Dimkić, I., Lalević, B.,& Raičević, V.. (2017). New insights in dehydration stress behavior of two maize hybrids using advanced distributed reactivity model (DRM). Responses to the impact of 24-epibrassinolide. in PlOS One
Public Library of Science (PLoS)., 12(6).
https://doi.org/10.1371/journal.pone.0179650
Waisi H, Janković B, Janković M, Nikolić B, Dimkić I, Lalević B, Raičević V. New insights in dehydration stress behavior of two maize hybrids using advanced distributed reactivity model (DRM). Responses to the impact of 24-epibrassinolide. in PlOS One. 2017;12(6).
doi:10.1371/journal.pone.0179650 .
Waisi, Hadi, Janković, Bojan, Janković, Marija, Nikolić, Bogdan, Dimkić, Ivica, Lalević, Blažo, Raičević, Vera, "New insights in dehydration stress behavior of two maize hybrids using advanced distributed reactivity model (DRM). Responses to the impact of 24-epibrassinolide" in PlOS One, 12, no. 6 (2017),
https://doi.org/10.1371/journal.pone.0179650 . .

DSpace software copyright © 2002-2015  DuraSpace
About the PlantaRum Repository | Send Feedback

OpenAIRERCUB
 

 

All of DSpaceCommunitiesAuthorsTitlesSubjectsThis institutionAuthorsTitlesSubjects

Statistics

View Usage Statistics

DSpace software copyright © 2002-2015  DuraSpace
About the PlantaRum Repository | Send Feedback

OpenAIRERCUB